学年

教科

質問の種類

数学 高校生

Focus Gold 数学Ⅱ 例題105 黄色マーカー部、Y=0のとき、グラフのどの条件のことをさしていますか?

の交点Pは,どのような図形を描くか. 3章 図形と方程式 例題 105 2直線の交点の軌跡 ( 1 ) mが実数値をとって変化するとき, 2直線 y=mx+8...... ① x+my=6..... ② (別解Ⅰ) ① ② ②よ 6-8m 6m+8 考え方 ①②の交点Pの座標を求めると, x=- 2 y 1+m² 1+m² となり、ここか した 解答 去してxyの関係式を導くこともできるが, 計算がやや大変ではある。 ここでは、交点をP(X, Y)として, 1, ②より [Y=mX +8 LX+mY= 6 この2式よりを消去して,XとYの関係式を導くことを考える 交点の座標をP(X, Y) とすると, Y=mX +8 ...... ①、 X+mY=6...... ②、 6-X (i) Y0 のとき,②より, m= ③ Y ③①'に代入して, Y = - 6-X ・X+8 より Y こうする 分母にくる Y=0 と Y'=6X-X2+8Y 場合分けを したがって, (X-3)2+(Y-4)²=25 ④より、た ただし, Y = 0 となる④上の点(0, 0) (60)は除く。 X+m0=6 (i) Y = 0 のとき,②より, X=(別解 2) wwwwww つまり、 X=6 ①'に代入して, 0=m・6+8より,m=-- 4 3 4 3 したがって, m=-- のとき 2直線の交点は m=- P (6,0)となる. に代入し よって, (i), (ii)より交点Pの描く図形は, 中心 (34) 半径50円 ただし、原点を除く. てみるとよい (道)より、( た点(6.0)) 描く図形に Focus 注 2直線の交点の軌跡を求めるには, 「媒介変数の消去」か 「図形の性質を調べる」 次ページの (別解1) では,計算が大変になるが, m (媒介変数) の消去の練習にもなるので,交点P (x, y) の座標より,x,yの関 係式を導いている,また (別解2)では,①の傾きは②の傾 きは 1で、m=-1 より ①と②は垂直に交わる m m かるので,求める交点Pの軌跡は, AB を直径とする円周上にあると考えら また、①,②はそれぞれ定点A(0, 8), B(6, 0) を通ることがわ 練習 105 *** (6-

未解決 回答数: 1
数学 高校生

(2)は判別式と最初に書いてあるa>0の2つの条件のみで解くのはだめですか?g(-1)と軸>-1は必要ですか?

40 逆関数 (s)=var-2-1 (a>02) とするとき、次の問いに答えよ (1) y=f(x) の逆関数y=f(x) を求めよ.(s) ハー (2) 曲線 y=f(x) と曲線 C2:y=f-l(xc) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,C2の交点のx座標の差が2であるとき,αの値を求めよ。 (0>x) (x)\S 〈逆関数の求め方〉 精講 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し, xとyを入れかえればよい 〈逆関数のもつ性質> I. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは、直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,Iが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+10 より, 値域は y≧-1 ここで,両辺を2乗して ■大切!! ax-2=(y+1)2 . a x = 1/1 (4+1)² + 2/2 (y = −1) a よって、f(x)=1/2(x+1)+12/2(x-1) 【定義域と値域は入れ かわる a a 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが,この値に対してyを決める規則が関数で ですから、xの範囲, すなわち, 定義域が 「すべての実数」 でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません . (2) y=f(x) y=f'(x)のグラフは,凹凸が異なり,かつ, 直線

解決済み 回答数: 1
生物 高校生

問題文から何を言っているのか全くわからないです。問題を解く時の考え方など教えて欲しいです🙇‍♀️🙇‍♀️

30 30 発展 25 次の文章を読み、 以下の問いに答えよ。 細胞分画法は,細胞小器官の大きさや重さ の違いを利用し、細胞小器官やそれ以外の成 分を分離する方法である。 ある動物細胞から, 次のような細胞分画法(図1)で, 細胞小器官 を分離した。 細胞破砕液 遠心分離 1000g 上澄みal 遠心分離 20000g 上澄み可 沈殿A 遠心分離 150000g 上澄みc 沈殿B まず 4℃の環境のもと, 適切な濃度の スクロース溶液中で細胞をすりつぶし, 細胞 破砕液をつくった。 次に,細胞破砕液を試験 管に入れて, 1000g(gは重力を基準とした遠 心力の大きさを表す) で10分間遠心分離し、 沈殿 A と上澄みa を得た。 これらを光学顕 微鏡で観察したところ, 沈殿Aには核と未 破砕の細胞が含まれていたが,上澄みa 表1 各沈殿・上澄み中の酵素Eの活性(U) 沈殿C 図1 細胞分画法 沈殿 A 134 U 上澄み a XU 沈殿 B 沈殿 C 463 U 6U 上澄み b 上澄み YU 25 U には,これらは含まれていなかった。 上 澄みをすべて新しい試験管に移し、 20000g 20分間遠心分離し, 沈殿B と上澄み bに分けた。 さらに, 上澄み b をすべて新しい試験管に移し, 150000g で180分間遠心分離し、 沈殿Cと上澄み に分けた。次に,各沈殿と各上澄みについて 呼吸に関する細胞小器官に存在する 酵素の活性を測定し,表1に示す結果を得た。 なお表中のU(ユニット)は酵素 E

回答募集中 回答数: 0
数学 高校生

数Ⅱ 軌跡の問題です 解説3行目からわかりません!! 解説お願いします!!🙇

162 基本 例題 99 媒介変数と軌跡 00000 は定数とする。 放物線y=x'+2(a-2)x-4a+5について αがすべての 実数値をとって変化するとき、頂点の軌跡を求めよ。 基本 98, 重要 102 CHART & SOLUTION 基本例 直線 x x-2y- CHAR 線対称 xyが変化する文字αを用いて表される点の軌跡 つなぎの文字を消去して、xだけの関係式を導く 頂点の座標を (x, y) とすると x=(αの式),y=(αの式) の形に表される。 ここから, つなぎの文字αを消去して,xとyの関係式を導く。 解答 放物線の方程式を変形すると 点Qが Pの軌 y={x+(a-2)}-α²+1 y={x+(a-2)}^ -(a-2)-4a+5 ---- x=-α+2 放物線の頂点をP(x, y) とする と a=-1 ① 0 /1 2 3 X 放物線y=a(x-p)+q の頂点の座標は (p.g) y=-α²+1 ...... ② 解答 直線 上を 直線 に関 ①から α=-x+2 x これを② に代入して y=(x+2)2+1 -3a=2 a=-2 つなぎの文字αを消去。 したがって、求める軌跡は 放物線 y=(x-2)2+1 INFORMATION 媒介変数表示 図形の方程式がx=f(t), y=g(t) のように,もう1 別の変数 (媒介変数) を使って表されたとき,これ を媒介変数表示という。 y (-1,4) t=-2 (3,4) t=2 1つの実数の値に対して, x=f(t), y=g(t) によ り (x, y) の値が1つに決まり,tが実数の値をとっ て変化すると, 点(x,y) は座標平面上を動き、 図形を 描く。 (0, 1) t=-1 (2,1) t=1 0 (1, 0) 例 x=t+1, y=t2 は放物線y=(x-1) 2 を表す。 実際に点をとると, 右の図のようになる。 1=0 PRACTICE 99 3 αは定数とする。 放物線 y=x+ax+3-α について, αがすべての実数値をとって 変化するとき,頂点の軌跡を求めよ。

解決済み 回答数: 1
1/238