学年

教科

質問の種類

数学 高校生

至急お願いします🙇 数Iの範囲なのですが解説が載ってなくてどうしてこの答えになるかがわからないので解説お願いします🙇 問2全部です

22:57 1月28日 (火) PDF } ああ 今] 80% サムネールを表示 Ⅱ 以下の問いに答えなさい。 問1 kを0でない実数とする。 xの2次方程式 x2 (3k+7)x +5k = 0 と x2+ (3k-3)x -5k = 0 が共通の解をもつとき,kの値と共通解を求めなさい。 問2 下の図は, ある日のある時刻に, 直進する太陽光が建物 (図の長方形) によって遮られ, 地面に 影が出来ている様子を表す。 図において, 影と日向(ひなた)の境界である点Aと建物の壁の点 Bの距離は360√3cmであり, 太陽光と地面のなす角 (∠BAC) は30° である。 (1) この建物の高さを求めなさい。 (2) (1)において, 身長160cmの人が建物から離れたところに立っている。 ここで, 人を線分 XYで表し, 端点Xは頭部を表すとする。 夏の猛暑のため、この人は日陰に近寄ろうとして 地面に出来た建物の影の部分に立っているが, 頭部 X は太陽光に当たってしまっている。 この人の頭部が太陽光に当たらないようにするためには, 点Bから何cm以内まで近づけば よいか。 図を参考にして答えなさい。 A 人 X 30° 日向 A Y (ひなた) 日陰 B ............... 太陽光 建物

回答募集中 回答数: 0
数学 高校生

青チャート数Bの統計の分野です。 P(k)までは合ってるっぽいんですけど、以降の計算でΣ[k=1,n-2]kP(k)を、P(n-1)とP(n)は0だと思ったのでΣ[k=1,n]kP(k)にして計算したら間違ってました。おそらく何か勘違いしてるので、どなたか説明してくれませんか。

(2) E(X)-kp-kn(n-1) n(n-1) (nk-k²) = n(n=1) {n • \/ \n (n+1)= | | (n+1)(2n+1)} 2 = n(n-1) = n(n+1)(3n-(2n+1)) n+1 6 3(n-1)(n-1)=n+1 3 また E(X)=R²-k²- 2(n-k) n(n-1) n(n-1) (nΣk²-k³) 2 72° また、に関係しない の式を 前に出す。 =(n+1) -n(n+1)(2n+1) =(-1) { //1n(n+1)(2n+1)-1/13r(n+1)} = 1/2(+1) n(n+1) 6 よって_V(X)=E(X*)-{E(X)n(n+1)_(n+1) (n+1)(n-2) 18 本 (nは3以上の整数) のくじの中に当たりくじとはずれくじがあり、そのうちの ② 66 2本がはずれくじである。このくじを1本ずつ引いていき、2本目のはずれくじを 引いたとき、それまでの当たりくじの本数をXとする。 Xの期待値E(X)と分散 V (X) を求めよ。 ただし, 引いたくじはもとに戻さないものとする。 [類 新潟大 p.519 EX 39.40 出るこ るときであるか [2]Zのとりうる よって、(1)から 二項定理により ゆえに、 Zn個の確率 副題の(2)は,次 knに対し X. 2 Xs........ EC 2以上の自 勝った人の数 (1) ちょうど (2)Xの期待 X-Omer P(x+c) = t h PD U ( n n y ) Ci me Pry=2)= (+ 1-2 A-3) 3 (+ P ht (n-2) -3 n-14 h (例2 (Pf) (=(n-2)/(h= h-1-k (h)! n(h+1) \^<2)! (^^-*) W (m-k)? (+) Ex)=l=k-1 2k+1) =h(n-1) ht 573072. pm. Proof={ \+) (2011) + {ach+i)} = +11 + (2n++ b + 4) h-1 2(n+1)(nt) == n-1. 3(h-1)

回答募集中 回答数: 0
数学 高校生

解説お願いします

4 ある日、太郎さんと花子さんのクラスでは,数学の授業で先生から次のような宿題が出された. [宿題] △ABCの内部に点Pを取り, 点Pから直線 BCにおろした垂線をPD, 点Pから 直線CA に下ろした垂線をPE とする. また, 点Aから直線 BCに下した垂線の長さを ha, 点Bから直線 CA に下ろした垂線の長さを ん と置く. PD:hA=PE:hp=1:3 であるとき, △PAB と △ABCの面積比を求めよ. (1) 太郎さんは, 宿題について,つぎのような構想をもとに, 正解を得た. 太郎さんの構想 △ABCの面積をSとすると, △PBC, △PCA の面積もSを用いて表すことができる. それらを用いて, △PABもSを用いて表す. 太郎さんの解答・ △ABCの面積をSとすると △PBC = △PCA = ア S と表せる. よって △PAB= イ S であるから △PAB △ABC= イ : 1 (i) ア イ に当てはまるものを,次の①~⑦のうちから一つずつ選べ。但し、同じ ものを選んでもよい . ⑩ 2 0 3 ② 4 ③ 6 ④ 12 [⑤ 1-3 1 ⑥ DI ⑦ 4 太郎: 宿題の点Pはどのような点なのだろう. 花子 : 直線 CP と直線ABの交点をF と置くと, AF:BF = ウがわかるよ. 太郎: ということは, APFとAPCの面積比から, 点Pは△ABCの エ であると いうことがわかるね. (ii) ① 2:1 ② 3:1 [③ 1:2 ウ に当てはまるものを、次の⑩~④のうちから一つ選べ。 1:1 1:3 (iii) エ に当てはまるものを,次の①~③のうちから一つ選べ。 ⑩重心 ①外心 ②垂心 ③傍心 -5-

回答募集中 回答数: 0
英語 高校生

文中のasは何の役割をしているのでしょうか??

a Web nd トラッカー リストバンド 要。 類義語 ) 三覚えてお チへの簡単 232 lam writing to apply for the position of Jaccounting manager, as advertised in the February 9 edition of Bright Career Magazine. apply [ǝplái] 動 応募する、申請する、 あてはまる、適用する、 塗る 名 application (応募書類、応募、申請) 関 applicant (応募者) apply for X (Xに応募する、Xを申請する) の形で最頻出の多義語 125 apply for a job (仕事に応募する) や apply for reimbursement (払い戻しを申請する)、 apply for a loan (融資を申請する) といった形でも出る。 名詞の application (応募 052)や関連 語の applicant (応募者268) も頻出。 accounting [akáuntin] 名 経理、会計 関 accountant (会計士)、audit (監査、会計検査)、 auditor (会計検査官、監査官 ) Jaccounting firm (会計事務所) や accounting report (会計報告書) の形でも出る。 advertise [ædvortàiz] 宣伝する 名 advertisement (広告、宣伝) 状況や kofX/ 関 advertising 広告(業)、宣伝(活動) 設問文でも頻出。 例 What is being advertised? (何が宣伝されていますか 名詞 advertisement (広告、宣伝) はパート7の文書タイプでも出る頻出語。 例 place/run an advertisement (広告を出す) adと略された形でも出る。 例 an ad campaign (広告キャンペーン) edition [idífan] 名 (本、雑誌、新聞等の) 版 関 edit (編集 編集する)、 editor (編集者)、 editorial (形編集の名 社説 類 version (版、バージョン) お 類義語の version (版、バージョン)も頻出。 例 an updated version of the software (ソフトの新バージョン) 関連語の editor 346 や editorial 246 も重要。 2月9日版のBright Career誌で宣伝されていた、経理マネージャーの職 に応募するため、お便りしています。

回答募集中 回答数: 0
英語 高校生

英語の問題です。 できれば解き方も教えて欲しいです

(2) She listened attentively to her teacher ( the in no order to 2 in order not to (3) I carried the jar of honey very carefully ( ) miss anything. 私たちの目は、ま 1 ( )に入る最も適切な語句を ① ~ ④から選びなさい。 (2) (1) It is no ( ) arguing with people when they are very upset. 4 way (3 use The wonder 2 doubt (京都女子大) 3 in order to none ) spill it on the floor. ④so not in order to (共立女子大) divibe 3 so that 4 so as not to (畿央大) 3 be found 4 have found (駒澤大) ①in order to 2 instead of The (4) My watch wasn't to ( ) anywhere. I find had 2 finding (5) ( your 1 Keeping 4 You should keep antivirus software updated can maintain your computer's security. 3 In order to keep 2 Keep (6) The end-of-term test questions were reasonable and easy ( They scores. I be solved 2 to solve 3 solved (7) Both women became successful lawyers before ( 1 enter to ) politics. 3 entering now noilgga 195/mulov 2 entered into Tho (169but (8) I went to his house for help, ) find that he was not there. am) dhia so that 1 before (9) I'm looking forward to (i) all of you in person. (1) see 5) (10) Jill didn't have ( ①1 enough (11)( 2 saw ). All of the students got good (芝浦工業大) 4 having solved (東海大) ④ entrance ( 同志社女子大) ④only to y in person. 01, exil voy bluow ytivit ③ seeing ) time to check my homework, so I asked Kevin instead. 2 many ③ such ) that she had passed the exam, she shouted with joy. ①On hearing (12) Naomi likes ( 2 Upon heard 3 When heard ) to the same song again and again until she gets sick of it. 4 seen (南山大) ④plenty ( 日本女子大 ) ④With hearing (松山大) I listen 2 listening 3 listened Sie bo to listening BAW (13) There is ) what he will do. (立命館大) s an ①no telling (14) Little by little, I'm getting accustomed to ( 1 do (15) The news of free entrance tickets sounded ( 2 no to tell 3 not telling ④ not to tell 2 doing ) my job at the cafe. 3 be done (高千穂大) ④have done 1 as 2 so ) good to be true, but it was true. 3 too ④very (中京大) (16) I find (c ) hard to understand why they have made this decision. ①it 2 so C 3 that hitaq ④very (日本大)

回答募集中 回答数: 0
数学 高校生

テトナがわかりません。 答えに樹形図があったのですがいまいち理解ができませんでした…どなたか写真の樹形図の説明と書き方を教えてください。 すみませんがよろしくお願いします🙇‍♀️

第4問 (配点 20) 1個のさいころを繰り返し投げ,次の規則(a), (b) にしたがって箱の中の球の個数 (以下, 球数) を変化させる。 最初, 箱の中に球は入っていない。 (2) さいころを2回投げた後の球数のとり得る値は, 小さい方から順に 2, ウ I 2回 であり,それぞれの値をとる確率は次のようになる。 規則 (a) 1回目に出た目が, 3の倍数のときは箱に球を1個入れ, 3の倍数でないと きは箱に球を2個入れる。 b 2回目以降は次のように球数を変化させる。 出た目が3の倍数のときは箱に球を1個追加する。 出た目が3の倍数でないときは球数が2倍になるように球を追加する。 例えば, 1, 2, 3回目に出た目がそれぞれ 6, 3, 2ならば, 球数は 0個 → 1個 +1 ← 2個 4個 +1 ×2 と変化する。 ア (1) さいころを1回投げるとき, 3の倍数の目が出る確率は である。 イ (数学Ⅰ 数学A第4問は次ページに続く。) 球数 2 ウ I 確率 13 オ キ カ ク ケコ よって, さいころを2回投げた後の球数の期待値は である。 また, さいころを2回投げた後の球数が エ であったとき 2回目に出た目 シメ が5である条件付き確率は である。 スメ (3) 球数が5以上になったところでさいころを投げることを終了するものとし, 終了 するまでにさいころを投げる回数をN とする。 ソタメ Nの最小値は であり, N= となる確率は である。 チツ× テトX X また,Nの期待値は である。 X

回答募集中 回答数: 0
1/73