学年

教科

質問の種類

物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0
数学 高校生

線を引いている①の式が分からないのと、右側にある丸の印を付けている30というのが分かりません、。なんでtan90度ではないんですか? 解説お願いします🙇‍♀️

226 基本 例 135 測量の問題 00000 | 目の高さが1.5mの人が,平地に立っている木の高さを知るために, 木の前方の |地点Aから測った木の頂点の仰角が30℃, A から木に向かって10m近づいた地 点Bから測った仰角が45°であった。 木の高さを求めよ。 指針 p.222 基本事項 2 基本 133 基本 ① 与えられた値を三角形の辺や角としてとらえて,まず図をかく。そして、 ② 求めるものを文字で表し, 方程式を作る。 特に、直角三角形では,三平方の定理や三角比の利用が有効。 ここでは,目の高さを除いた木の高さを求める方がらく。 基本 例題 1 右の図の△AF に垂線 ADI AD=DC, AI (1) 線分AD (2) sin 75°, fast 点Aから点Pを見るとき, AP と水平面とのなす角を, PがAを通る水平面より上にあるならば仰角といい 下にあるならば俯角という。 ぎょう A 仰角 俯角 三角比 特に, の比を (1)ㄥ 形 き CHART 30° 45° 60°の三角比 (2) -30° 三角定規を思い出す 2 45° √3 (1) △ 60 45% 解答 ZA △A 右の図のように, 木の頂点を D, 木の根元をCとし 解答 目の高さの直線上の点を A', B', C' とする。 h=(10+x)tan 30° このとき, BC=x (m), C'D=h(m) とすると ① h=xtan45 A' 30° B45° ②から 1.5ml x=h これを①に代入して A 10m B xm 10+h h= ゆえに √3 (√3-1)h=10 ①,②はそれぞれ 10 よって h=- √√3-1 10(√3+1) (√3-1) (√3+1) 10(√3+1) tan 45°= =5 (√3+1) 2 したがって、求める木の高さは、目の高さを加えて 5(√3+1)+1.5=5√3+6.5(m)(*) 注意 この例題のような, 測量の問題では, 「小数第2位 を四捨五入せよ」などの指示がある場合は近似値を求 め、指示がない場合は計算の結果を、 そのまま (つま 上の例題では根号がついたまま) 答えとする。 tan 30°= /30° 45% 60°の三角比の 値は覚えておくこと。 (*) 31.73から 5√3=8.65 よって、538.7 とすると 5√3+6.58.7+6.5 =15.2(m) √3 tan 30% h h から ここで x tan45°=1 10+x’ 練習 海面のある場所から崖の上に立つ高さ30mの灯台の先端の仰角がG 135 よ よく L. △ か <カ (2) 練習 ③ 136

回答募集中 回答数: 0
物理 高校生

カッコ5なんですけど最初自分写真のように解説とは違うやり方でやったんですがなんか答えが違うんですが なにか間違ってるところがあったら教えて欲しいです

媒質2 なる。 AD その山ある いは谷は, 2周期後どこまで移動するか。 移動 の軌跡を図に太い線で示せ。 (5) 一般に, A, B からの距離差が5.0cmの点は, どのような振動をするか。 また, それ らの点を連ねた曲線を図に細い線で示せ。 (6)線分AB上にできる定在波の腹はいくつあるか。また,これらの腹の位置の,点A からの距離を求めよ。 例題 27,150,151 148 波の屈折 図のように,媒質1と媒質2が境界面Aで,また媒質2と媒質3 が境界面Bで接している。媒質1から入射した平面波の一部が,境界面Aで屈折して媒 質2へ入っていく。 が屈折 図中の平行線は波の波面を表している。 媒質1における入射波の波長は 1.4cm,振動 数は50Hzである。 21.4 として計算せよ。 媒質1 45° (1)媒質1の中での波の速さは何cm/s か。 A Y (3)媒質2の中での波の波長は何cmか。 (2) 媒質1に対する媒質2の屈折率 n12 はいくらか。 媒質2 30° 質2 BC (4)媒質2の中での波の振動数は何Hz か。 (5) 媒質1に対する媒質3の屈折率 n13 を 0.70 とすると,媒質3 2に対する媒質3の屈折率 723 はいくらか。 例題 28,152

回答募集中 回答数: 0
数学 高校生

赤線のところの式変形がわかりません もう一個わからないところがあってsin60°分のaってどこのことですか?

276 例題 170 正四面体の高さと体積 基本例 000 1辺の長さがαである正四面体 ABCD において, 頂点A から BCD AH を下ろす。 (1) AH の長さんをαを用いて表せ。 (2) 正四面体 ABCD の体積Vをαを用いて表せ。 (3) 点Hから △ABCに下ろした垂線の長さをαを用いて表せ 許 (1) 直線 AH は平面 BCD 上のすべての直線と垂直であるから AHIBH, AHICH, AHIDH ここで, 直角三角形 ABH に注目すると よって まずBH を求める。 AH=√AB2-BH また,BHは正三角形 BCD の外接円の半径であるから, 正弦定理を利用。 (2)(四面体の体積)=1/12 (底面積)×(高さ) HABC, HACD, HABDの体積は等しいことも利用。 (1) AABH, AACH, AADH (3) 3つの四面体 HABC いから、 (四面体 HABC =(正四面 が成り立つ。 求める垂線の長さを (四面体 HABC 1 3 また, (2) より 正 から,これらを よって x= 解答 はいずれも ∠H=90° の直角三 角形であり AB=AC=AD, AH は共通 であるから D である。 直角三角形におい 辺と他の辺がぞ 等しいならば互い 検討 重心の性質を用い 正三角形におい (1)のAH の長さ なお, 重心につ 100B H 三角形の 三角形の △ABH=△ACH=△ADH よって BH=CH=DH C ゆえに、Hは ABCD の外接円の中心であり, BH は H は BCDの 辺 CD の中点 ABCD の外接円の半径であるから, ABCD において、 (数学Aで詳しく であるから a 正弦定理により =2BH-EL sin 60° ABCD は正三角 り、1辺の長さは したがって a a よって BH= √3 a FE △ABHは直角三角形であるから, 2 √3 = の内角は60°である 2sin60° 2 例題 170 A 三平方の定理により h=AH=√AB2-BH?V a a a²- 2 √√6 a /3 3 3 B a H √3 (2) ABCD の面積をSとすると 1 S=asin 60-√3a² 4 よって、正四面体 ABCD の体積Vは 1 √√3 √6 r=/13sh=13 V= a². a= 4 3 12 √2 a であるこ につい また、 (ABCDの面積) BC BCBDsin40 いる( 練習 1辺の ③ 170 にお (1) 17 (3)

回答募集中 回答数: 0
化学 高校生

(5)のカの求め方がよく分かりません。 あと(6)のオレンジで印のつけてあるv’1>v’2のところで平衡2の方が1よりアンモニアは少ないからアンモニアを分解する逆反応v’2がv’1より大きくなってv’2>v1と考えることもできませんか?

問2 次の文章を読んで, 設問 (1)~(6)に答えよ。 7mol 3mal 窒素 N21.0mol. 水素 H2 3.0molの混合気体を少量の四酸化三鉄 FeO』とともに容 積可変の密閉容器に入れ、 ある温度で反応させると, 式 (1) の反応が起こり, アンモニ アNH』 が生じた。 2mol N2 + 3H2 2NH3 チュ Ett (1) 2コ 容器内の圧力をP 〔Pa] に保つと、 混合気体中の物質量の比がN: H2: NH3 =1:3: 2になったところで平衡状態となった (平衡状態1とする)。 また,平衡状態における各気体の分圧をPNa. PH, PN4 とすると,圧平衡定数 K, は 式 (2) のようになり, P1 を用いてK を表すと式(3)のようになる。 (PNH) 2 K₁ = PN2X (PH2 ) 3 ア [ウ Kp= P1 イ 平衡状態1から温度を一定に保ったままで, 圧力を Pi 〔Pa] よりも 設問(5) 空欄 ク にあてはまる整数を記せ。 設問(6) 平衡状態における正反応によるNH』の生成速度を11. 逆反応による NH3 の分解速度をvi', 平衡状態2における正反応による NH3の生成速度をV2, 逆反応によるNH の分解速度を vzとする。また,平衡状態1から平衡状態 2に変化する過程でのある時間における正反応によるNH3 の生成速度を Ut, 逆反応による NH3 の分解速度を ur' とする。 次の(a)~(c)に示した反応速 度の大小関係を等号もしくは不等号を用いて表せ。 (a) (b) vi v₂ (C) vt v2 平 1→2 平衡状態では 1→ 2 (2) →正 NH ←反応 (3) NHD減らす反応の 方が速い 正反と反の亜同じ ひび NHS だんだん NHSの増える 速度 ひこぴ ひとくひと ひとつひ 平衡2の方がより NH ひょうひ エ(高い低い) P2 〔Pa] に保つと,平衡がオ(右左に移動し,N2, H2, NH3 の 物質量の比が1 カ 1になったところで新たな平衡状態となった (平衡状態 2 とする)。 P1とP2 の間には式 (4) の関係が成り立つ。 P2= -P1 (4) ク 設問 (1) 式 (1) のアンモニアを合成する方法の名称を記せ。 設問(2) 平衡状態1 における NH3 の物質量を有効数字2桁で記せ。 設問(3) 空欄 ア ~ ウ にあてはまる整数を記せ。 設問 (4) 空欄 エ オ に括弧内の語句のいずれかを記せ。 い ひょうひょ

回答募集中 回答数: 0
1/43