学年

教科

質問の種類

数学 高校生

1番最後の[1][2]から、というところですが、 なぜ(-1)ⁿではなく(-1)ⁿ+¹なんですか💦

例題 28 重要 に分けて和を求める 00000 一般項がαn=(-1)"+1n2 で与えられる数列{an} に対して,Sn=ak とする。 (1) a2k-1+a2k (k=1, 2, 3, ......) を ん を用いて表せ。 (2) Sn= (n= 1, 2, 3, ......) と表される。 k=1 次のように頭を2つずつ区切ってみると Sn=(12-2)+(32-4)+(52-62)+...... =b₁ =b₂ 指針 (2) 数列{an}の各項は符号が交互に変わるから,和は簡単に求められない。」 =b3 ****** 上のように数列{6} を定めると, bk=a2k-1+αk (kは自然数) である。 よってm を自然数とすると [1] n が偶数, すなわち n=2mのときはS2m2=(-1)として求め られる。 k=1 k=1 1 [2]nが奇数、すなわちn=2m-1のときは,Sam = Sim-1+α2m より S2m12m-a2mであるから, [1] の結果を利用して Szm-1 が求められる。 このように, nが偶数の場合と奇数の場合に分けて和を求める。 (1) 2-1+a2x=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k [1]=2mmは自然数)のとき m m S2m=(a2k-1+a2k)=(1-4k) =m-4. m= =1であるから Sn -m(m+1)=-2m²-m =-2(2)-=-n(n+1) [2]=2-1(mは自然数) のとき 2m+1. azm=(-1)2 '(2m)'=-4m² であるから S2m-1=S2m-a2m=-2m²-m+4m²=2m²-m n+1 m=- であるから 2 S,=2(n+1)_n+1=1/2(n+1){(n+1)-1} = n(n+1) [1],[2] から Sn=(-1)+1 2 -n(n+1) (*) (-1) =1, (-1)=-1 ={(2k-1)+2k} ×{(2k-1)-2k} S2m= (a1+a2) +(as+αs) +...... +(a2m-1+a2m) Sm=-2m²-mに 2=1/27 を代入して,n m= の式に直す。 <S2m=S2m-1+a2m を利用する。 S2m-1=2m²-mをnの 式に直す。 451 (*) [1], [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。 一般項がαn=(-1)n(n+2) で与えられる数列{an} に対して, 初項から第n項ま での和 S を求めよ。 1 章 ③種々の数列

解決済み 回答数: 1
数学 高校生

F1a-158 ①(2)の解説のピンクの蛍光ペンを引いたところがわかりません。 ②①の質問とかぶるところがあるかもしれないのですが、約数の個数の求め方は公式を覚えてるので解けるのですが、なぜ素因数分解したらそれを元に総和が分かって、左の表のようになるのですか?表がよく分か... 続きを読む

例題 158 約数の個数 男の金 **** (1)(a1+az)(bi+b2+ba+ba) (ci+C2+ca) を展開すると,異なる項は何 個できるか. X2200の約数の個数とその総和を求めよ.また,約数の中で偶数は何 個あるか ただし, 約数はすべて正とする. 考え方 (1) (α)+α2)(b)+b2+bs+ba) (Ci+C2+c3) たとえば, (a1+a2)(by+b2+bs+bs) を展開してできる arb に対して, a*bi (Cr+C2+cs) の展開における項の個数は3個である (a1+az)(bi+b2+bg+b4) を展開するとき, abı のような項がいくつできるか考 えるとよい. (2) 1か2か2か23 × 1か5か52 であるが, (1+2+2+2°)(1+5+5)を展開すると、 1×1, 1×5, ②×14×1, 8×1, ②×54×5,8×5, 1×25, 2×254×25,8×25 がすべて一度ずつ現れる.したがって,約数の総和は,次のようになる。 (1+2+4+8)×1+(1+2+4+8)×5+ (1+2+4+8)×25 =(1 + 2 + 4 + 8 ) ( 1 +5 +25) 200=2×52 より,約数が偶数になるのは,1以外の23の約数を含むときであるか ら、2か22か2を含む約数の個数を求めればよい. a1, a2の2通り bi, 62, 63, b4 の4通り 例題 60 求め 「考え方 解答 (1) (a1+a2)(b1+b2+63+64) を展開してできる項 の個数は、2×4(個)である。 〇のこと のこと また, (a1+a2)(61+62+63+64) の1つの項 ab に対して, てかける 日数は序数+a*bi(c+cz+C3)010 off よって, 求める項の個数は, (2)200 を素因数分解すると, (3+1)×(2+1)=12 の C1, C2 C3の3通り の展開における項の個数は3個である. 2×4×3=24 (個) 200=23×52 積の法則 より、約数の個数は, 12個 1 21 22 23 また、約数の総和は, 11.1 (1+2+2+2)(1+5+52)=465 100 2.122-1 23-1 51 15 251 2% 51 2°•5' また, 偶数の約数は, 2か22か2を含むもの だから, ・5,52, 3×2+1=9 かけたやっ 52 1.52 2.52 2.52 23•52 偶数になるのは, 1 以外の 2'の約数を含むとき より, 偶数の約数の個数は, 9個 Focus 合 約数の個数は,素因数分解し、 積の法則を利用する 数個数は,素因数分解し、積の法則を利用する 用 a × 6° Xc" の約数の個数は,(n+1)(g+1)(n+1)個 (a,b,cは素数)

解決済み 回答数: 1
数学 高校生

数A なぜ、3×(2+1)をするんですか?

例題 158 約数の個数 **** (1) (a1+a2)(b,+b2+bs+ba)(ci+C2+c3) を展開すると、異なる項は何 個できるか. 130 (2)200の約数の個数とその総和を求めよ. また, 約数の中で偶数は何 一個あるか ただし, 約数はすべて正とする. 考え方 (1) (a+α2)(b,+b2+bs+ba) (CL+C2+C3) 14001 たとえば, (a1+a2)(b1+62+63+64) を展開してできる a b に対して, arb (cicaca)の展開における項の個数は3個である。円 13 (a1+a2)(bi+b2+bx+ba) を展開するとき, a b のような項がいくつできるか考 えるとよい. (2)1か2か22か23×1か5か52 であるが, (1+2+2+2)(1+5+52) を展開すると 1×1,2×14×1,8×1, 1×52×54×5, 8×5, 1×25,2×25,4×25, 8 × 25 7:001 がすべて一度ずつ現れる. したがって,約数の総和は,次のようになる。 (1+2+4+8)×1+(1+2+4+8)×5+ (1+2+4+8)×25 = ( 1 + 2 + 4 + 8 ) ( 1 +5 +25) 200=23×52 より 約数が偶数になるのは,1以外の23の約数を含むときであるか ら2か22か2を含む約数の個数を求めればよい。 1,2の2通り 解答 (1) (a1+a2)(bi+62+63+64) を展開してできる項 の個数は, 2×4(個)である。円 b, b, 63, b の4通り また, (a1+a2)(b1+b2+63+64) の1つの項 ab1 に対して, 001a*bi(ci+C2+c3) 展開における項の個数は3個である。 01 よって, 求める項の個数は、 C1, C2 C3 の3通り 2×4×3=24 (個) (2)200を素因数分解すると, |200=23x5 (3+1)×(2+1)=12 ( 積の法則 より、約数の個数は, 12個 また,偶数の約数は2か2か2を含むもの だから, また、約数の総和は, (1+2+2+2)(1+5+5)=465 51・51 21 51 2%•5' 2 •5 1 2¹ 22 23 1 1.1 2.1 2.1 23.1 52 1・52 2'.52 22.52 23•52 3×(2+1)=9? 偶数になるのは,1以外の より, 偶数の約数の個数は, 2°の約数を含むとき 9個 Focus 約数の個

解決済み 回答数: 1
数学 高校生

この問題のィについての質問です。解説で四角く囲ったところはb1×bnということなのでしょうか? 解説お願いします!

第4問~第7間は、いずれか3間を選択し、解答しない。 第4問 (選択問題)(配点 16) 太郎さんは、毎年の初めに預金口座に一定額の入金をすることにした。ここで、 金とは預金口座にあるお金の額のことであり、この入金を始める前の太郎さんの預金 は0円である。 預金には年利%で利息がつき、ある年の初めの預金がx万円であれ 100+xx万円となる。毎年の初めの入金額を@ ば、その年の終わりには預金は 100 円とし、入金を始めて4年目の年の終わりの預金を S 万円とおく。 nは自然数とす 太 る。 太郎:毎年一定額の入金をしていこうと思うのだけれど, n年目の年の終わりの 預金 S万円はいくらになるかな? 花子: S-1 と S の関係式を考えてみるのはどうかな。 太郎: そうすれば、S"をnやα,rを用いて表せそうだね。 -R として、式を立ててみよう。 花子 : 100+r. 100 (1) n≧2 のとき, S を SH-1, α, R を用いて表すと, Sn= a,n, R を用いて表すと, S= イ となる。 ア となり, Snを ア の解答群 RS-1 ① RS-1+α ② RS-1+αR Sn-1 4 Sn-1+a ⑤ S-1+αR イ の解答群 aR" a-aR"+1 ③ 1-R ① aR"+1 aR-aR" 1-R a-aRn 1-R aR-aRn+1 1-R (数学Ⅱ・数学B・数学C第4問は次ページに続く。)

解決済み 回答数: 1
1/13