学年

教科

質問の種類

英語 高校生

英検2級writing 添削をしていただきたいです🙇‍♀️字が読みにくいかもしれません💦

2 ●以下の英文を読んで その内容を英語で要約し、解答欄に記入しなさい。 ●語数の目安は 45 語~ 55 語です。 ●解答欄の外に書かれたものは採点されません。 ●解答が英文の要約になっていないと判断された場合は、0点と採点されることがあります。 英文をよく読んで から答えてください。 In recent years, AI has become increasingly familiar in daily life. In particular, the introduction of AI systems into cars is attracting a lot of attention. Car manufacturers in Japan and other countries have been focusing their time and efforts on developing self-driving cars. Within the next few decades, they may become commonplace. What are the benefits of self-driving cars? First, by having an automated driving system control driving, the physical and mental burden on the driver will be significantly reduced. Also, there may be fewer traffic accidents because driving errors by drivers will be reduced. On the other hand, there are some concerns about self-driving cars. First, until self-driving cars are mass-produced, manufacturing costs are expected to be very high. Additionally, if the programs controlling self-driving cars are rewritten through hacking or other means, it may lead to accidents or crimes. Therefore, it is essential to ensure the security of the systems. 解答欄 Self-driving cars may become commonplace. It can reduce physical and mental burden on the driver and (20) be fewer traffic accidents. However. It costs are expected to be very high. Also if it hacking or other means, it may lead to accidents or crimes, so 43 it is essential to ensure the security of the systems. 110

回答募集中 回答数: 0
数学 高校生

Focus Gold 数学Ⅱ 例題105 黄色マーカー部、Y=0のとき、グラフのどの条件のことをさしていますか?

の交点Pは,どのような図形を描くか. 3章 図形と方程式 例題 105 2直線の交点の軌跡 ( 1 ) mが実数値をとって変化するとき, 2直線 y=mx+8...... ① x+my=6..... ② (別解Ⅰ) ① ② ②よ 6-8m 6m+8 考え方 ①②の交点Pの座標を求めると, x=- 2 y 1+m² 1+m² となり、ここか した 解答 去してxyの関係式を導くこともできるが, 計算がやや大変ではある。 ここでは、交点をP(X, Y)として, 1, ②より [Y=mX +8 LX+mY= 6 この2式よりを消去して,XとYの関係式を導くことを考える 交点の座標をP(X, Y) とすると, Y=mX +8 ...... ①、 X+mY=6...... ②、 6-X (i) Y0 のとき,②より, m= ③ Y ③①'に代入して, Y = - 6-X ・X+8 より Y こうする 分母にくる Y=0 と Y'=6X-X2+8Y 場合分けを したがって, (X-3)2+(Y-4)²=25 ④より、た ただし, Y = 0 となる④上の点(0, 0) (60)は除く。 X+m0=6 (i) Y = 0 のとき,②より, X=(別解 2) wwwwww つまり、 X=6 ①'に代入して, 0=m・6+8より,m=-- 4 3 4 3 したがって, m=-- のとき 2直線の交点は m=- P (6,0)となる. に代入し よって, (i), (ii)より交点Pの描く図形は, 中心 (34) 半径50円 ただし、原点を除く. てみるとよい (道)より、( た点(6.0)) 描く図形に Focus 注 2直線の交点の軌跡を求めるには, 「媒介変数の消去」か 「図形の性質を調べる」 次ページの (別解1) では,計算が大変になるが, m (媒介変数) の消去の練習にもなるので,交点P (x, y) の座標より,x,yの関 係式を導いている,また (別解2)では,①の傾きは②の傾 きは 1で、m=-1 より ①と②は垂直に交わる m m かるので,求める交点Pの軌跡は, AB を直径とする円周上にあると考えら また、①,②はそれぞれ定点A(0, 8), B(6, 0) を通ることがわ 練習 105 *** (6-

解決済み 回答数: 1
数学 高校生

Focus Gold 数学II 例題98 写真の赤線部はなぜ成り立つのですか?

例題 98 円外の点から引いた接線(2) 2円の方程式 ***** x+y=5に点 (31) から接線を2本引く。そのときの2つの接点 P,Q とするとき,直線PQ の方程式を求めよ。 [考え方 接点の座標をP(x, yì), Q(x2,y2) とおいて求める 解答 接点をP(x1,yi), Q(x2,y2)とすると、 点Pにおける接線は, xx+y=5 3x+y=5Q...① 3x2+y2=5... ② これが点 (31) を通るから, 点Qにおいても同様にして ①②より、点P. Qは直線 3x+y=5 上の点である 2点PQ を通る直線は1本に決まるので、直線 PQ の方程式は, 3x+y=5 (別解) 点R(3,1) とする. △OPR と △OQR は合同な三角形 だから、対称性より, OR⊥PQ 円x+y=r上の 点(x1, yi) における 接線の方程式 xx+y=r YA R(3, 1) √5- P P (3. 0 x x 1Q これより直線PQの傾きは3で あるから kを実数として, 直線 PQ は,y=-3x+kとおける 0 1QS 原点と直線 PQ の距離 dは, d= |-k| k √32+12 10 ここで 直線 OR と直線 PQ の交点をSとすると, (直線ORの傾き) (直線PQの傾き) 図より, k0 △OPR∽△OSP であり, OR=√10 OP√5OS= k ∠POR = ∠SOP, √10 ∠OPR = ∠OSP だから5:10:5 k=5 10 OP: OS=OR: 0 よって、 直線 PQ の方程式は、 y=-3x+5 Focus 円外の点(x,y) から円x+y=r" に引いた接線の 2 接点を通る直線は, xox+yoy=r.2 (極線) 注 <証明> 接点を (x1,y1)(x2,y2) とすると, 接線はxx+yy=rx2x+yzy=r YA (xo, yo) (x, y) となりともに点(x,y) を通るから, xix+yiyo=r2, x2x+yayo=r2 (*) O X2Y2 ここで, 直線 Xox +yoy=r を考えると、 (*)より(x,y) (x2,y2) はこの直線上の点である。 よって, 求める直線は, xox +yoy=r(証明終) 同様に考えて、円外の点(x0,yo)から円(xa)(y-b)=rに引いた接線 の2接点を通る直線の方程式は, (xa)(x-a)+(yo-b)(y-b)=r 練習x+y=10 に点(5, 5) から接線を2本引く。 そのときの2つの接点を結 98 直線の方程式を求めよ。 ***

解決済み 回答数: 1
数学 高校生

Focus gold 例題89 なぜこの解き方が間違っているのかがわかりません

4 第3章 図形と方程式 Think 立 **** 例題 89 弦の長さ(1) 直線 y=2x+2...... ① が円 x + y' =8...... ② によって切り取られて 解答 円 ②の中心 (0,0) と直線①の距離は, |2| |2| 2 できる弦の長さを求めよ. 考え方 図に描いて考える 円の中心と弦の距離を求めて、三平方の定理を利用する y=2x+2 より 2x-y+2=0 =- √2+(-1)^√55 2√2 2√2 求める弦の長さを2ℓ とすると,円の 2√2 2ℓ とおくのがポイ ント 半径が22より X e+(1/5)=(2/2) 36 e2. 5 6√5 I+ l>0より, l=- 5 12/5 よって、弦の長さ2ℓ は, 5 (別解) ①を②に代入して, x2+(2x+2)2=8 (B, 2B+2) 5x2+8x-4=0 .....③ また,円 ②と直線 ①の交点の座 標を(α, 2α+2) (22) とす x ると,α βは2次方程式 ③ (a,2a+2) の2つの解だから,解と係数の関係より、 8=2√√2 ) 2 三平方の定理 求める長さは2ℓで あることを忘れずに 解と係数の関係を利 使用する解法 2.85% ax2+bx+c=0 の 2つの解をα βと 8 +B=- aß= 求める弦の長さを l とすると, l°=(β-a)'+{(2β+2)-(2x+2)}=5(β-α) 2 =5{(x+B-4aB)=5{(-2)-4(-1)}=141 すると b a+β=- aß= a a 三平方の定理 よって, l>0より,弦の長さは, 12/5 5+(1-8) Focus 弦の長さの問題は,円の中心から弦に垂線を引き、 三平方の定理を利用する l²+d²=r² >m> Think

解決済み 回答数: 1
数学 高校生

確率の問題です。 自分はPを使わずに計算しようとしたのですが、私の解答の(ⅲ)(ⅳ)で参考書の答えと違っていました。 自分の式はどこから間違っているか教えてほしいです🙇

例題 190 同じものを含む順列と確率 1 確率の基本性質 383 **** T, 0, H, O, K, U, A, 0, B, A の 10 文字から何文字か取り出し, 横1列に並べるとき, 次の確率を求めよ. (1) 10 文字を横1列に並べるとき,どの2つの0も隣り合わない確率 (2)10文字の中から6文字を1列に並べるとき,どの2つの0も隣り合 わない確率 考え方 確率を考えるときは, 0, 02, 03, A1, A2 として, すべて異なるものとして考える (同様の確からしさ). 解答 (1) T, 01, H, Oz, K, U, A1, 03, B, A2の10個を 1列に並べる並べ方は, 10! 通り どの2つの0も隣り合わない並べ方は,まず0を除 いた7文字を並べ、 さらに7文字の間と両端の8箇所 から3箇所を選んでO1, Oz, 03 を並べるときで, 7!×gP3 (通り) 計算しない. 確率なので, あとで 約分する. 7!×P3. 7!×8・7・6 よって,どの2つの0も隣り合わない確率は, 7 10! 10・9・8×7! 15 (2)10文字の中から6文字を1列に並べる並べ方は, 10P6通り (i) 6 文字のうち0が3つのとき P3×4P3 (通り) (i) 6文字のうち0が2つのとき P4×32×5P2 (通り) (ii) 6文字のうち0が1つのとき 7P5X3C1×6P1 (5) (iv) 6文字のうち0が含まれないとき P6通り よって, (i)~(iv)より, 求める確率は, P3×4P3+ P4×32×5P2+P5×3C1×6P1+P6 ^ ^ ^ ^ ^ ^ ^ ^ 7!X&P3 約分しやすく工夫す る。 0の数によって順列 の総数が異なるため、 場合分けして考える. ☐ ☐ ☐ ^ ^ ^ ^ 7P3×4P3 ^ ^ ^ ^ ^ 7P4X3C2X5P2 ↑ 01 02 03 のうち, どの0を選ぶか. 7 10 10P6 Focus 確率を考えるときは、 同じものも区別する (同様の確からしさ) 第7章

解決済み 回答数: 1
1/120