学年

教科

質問の種類

数学 高校生

青マーカーで引いてあるkとk+1の関係式がわかってないといけないのは何故でしょうか?k+2とkの関係を証明するだけではいけないのですか?教えて頂きたいです。

・cos on 倍角公式 : チェビシェフ 20 次の問いに答えよ。 0-E (1) n を正の整数とする. どんな角に対しても cosno=2cos0cos(n-1)0-cos(n-2)0 が成り立つことをを示せ. また, ある多項式 Pn(x) を用いて cos は cosno = pn(cose) と表されることを示せ oni (2) Pn(x)はnが偶数ならば偶関数, 奇数ならば奇関数になることを 示せ. 3 tan (3)多項式 pn(x) の定数項を求めよ. また, Pn(x) の1次の項の係数 を求めよ. [九州大〕 アプローチ (1-x) (イ) cos e には 2倍角, 3倍角の公式があります: cos 20 = 2 cos2 0–1 cos 30 = 4cos30-3cos0 この これらの右辺は cose の多項式になっているので,一般に 「cosno は cost の多項式になる」と予想されます。 これを示すのが本間 (1) です. n=4のと きは cos 40 = cos 2(20) = 2 cos² 20 -1 立 =2(2cos20-1)2-1 かっていないといけませんが, cos(k + 1)0 = coskocososin k0 sin O となり, sin0 がでてきてしまい、うまくありません. そこで誘導がついて n=k, いて, cos n は cos(n-1)0 と と cos(n-2) と cose でかけるので,n n=k+1のときを仮定するとn=k+2が示せることがみえてきます。す なわち となり、Pa(x) から Pa(x)の存在がわかります。 これらから Pa(x)の存在を 示すのに帰納法が使えないかと考えみます。そのためには「n=kのときと n=k+1のときの関係」すなわち「cosk と cos(k + 1)6 の関係式」がわ + + S となり合う関係 が分かってないと いけない

未解決 回答数: 0
数学 高校生

151. θはどこの角?と思ったのですがどこからこの場所(3.の解答の図の場所)であると分かるのですか?

236 43 030000 基本例題 151/3倍角の公式の利用 半径1の円に内接する正五角形 ABCDEの1辺の長さをαとし,0=2. 080057 (1) 等式 sin 30+ sin20 0 が成り立つことを証明せよ。 (2) cose の値を求めよ。 り (3) αの値を求めよ。 (4) 線分ACの長さを求めよ。 時間 最 p.233 基本事項 指針▷ (1) 30+20=2πであることに着目。なお, 0 を度数法で表すと 72°である。 (2) (1) の等式を2倍角・3倍角の公式を用いて変形すると (1) は (2) のヒント {0} COSOの2次方程式を導くことができる。 0<cos0 <1に注意して, その方程式を解く (3), (4) 余弦定理を利用する。 (4) では, (2) の方程式も利用するとよい。 解答 (1) 0から 50=2π このとき したがって (2) (1) の等式から sin 0 0 であるから, 両辺を sin0で割って 3-4sin20+2cos0= 0 3-4 (1-cos20) +2cos0=0 4cos20+2cos0-1=0 The ゆえに 整理して sin30=sin(2π-20)=-sin20 sin 30+sin 20=0 よって 3 sin 0-4 sin³ 0+2 sin 0 cos 0=0 0 <cos0 <1であるから (3) 円の中心を0とすると, △OAB において,余弦定理により AB²=OA²+OB²-20A OB cos 05(1-02005){( AC > 0 であるから AC= cos 0=1+√5 4 =12+12-2・1・1・ -1+√5-5-√5 4 a>0 であるから a=AB= (4) △OAC において, 余弦定理により AC2=OA2+OC2-20A・OC cos 20 30=2π-2050=30+20 5-√5 2 +2. −1+ 4 (*) =12+12-2・1・1・cos20=2-2(2cos20-1) =4-4cos20=4-(1-2cost)=3+2cos 2 -1+√5 (2) の(*)から。 5+√5 V 2 練習 11 ) 0=18° のとき, sin20 = cos30 が成り立つ 3倍角の公式 sin30=3sin0-4sin't 忘れたら, 30=28+0とし て, 加法定理と2倍角の 式から導く。 (3) BA (4) B C C 2751 a 1 1 0 D め ※加注 でに (1) 0=36°のとき, sin30= sin20 が成り立つことを示し, COS 36°の値を求め ある 次 sin co:

回答募集中 回答数: 0
1/4