学年

教科

質問の種類

数学 高校生

確率の問題です。 自分はPを使わずに計算しようとしたのですが、私の解答の(ⅲ)(ⅳ)で参考書の答えと違っていました。 自分の式はどこから間違っているか教えてほしいです🙇

例題 190 同じものを含む順列と確率 1 確率の基本性質 383 **** T, 0, H, O, K, U, A, 0, B, A の 10 文字から何文字か取り出し, 横1列に並べるとき, 次の確率を求めよ. (1) 10 文字を横1列に並べるとき,どの2つの0も隣り合わない確率 (2)10文字の中から6文字を1列に並べるとき,どの2つの0も隣り合 わない確率 考え方 確率を考えるときは, 0, 02, 03, A1, A2 として, すべて異なるものとして考える (同様の確からしさ). 解答 (1) T, 01, H, Oz, K, U, A1, 03, B, A2の10個を 1列に並べる並べ方は, 10! 通り どの2つの0も隣り合わない並べ方は,まず0を除 いた7文字を並べ、 さらに7文字の間と両端の8箇所 から3箇所を選んでO1, Oz, 03 を並べるときで, 7!×gP3 (通り) 計算しない. 確率なので, あとで 約分する. 7!×P3. 7!×8・7・6 よって,どの2つの0も隣り合わない確率は, 7 10! 10・9・8×7! 15 (2)10文字の中から6文字を1列に並べる並べ方は, 10P6通り (i) 6 文字のうち0が3つのとき P3×4P3 (通り) (i) 6文字のうち0が2つのとき P4×32×5P2 (通り) (ii) 6文字のうち0が1つのとき 7P5X3C1×6P1 (5) (iv) 6文字のうち0が含まれないとき P6通り よって, (i)~(iv)より, 求める確率は, P3×4P3+ P4×32×5P2+P5×3C1×6P1+P6 ^ ^ ^ ^ ^ ^ ^ ^ 7!X&P3 約分しやすく工夫す る。 0の数によって順列 の総数が異なるため、 場合分けして考える. ☐ ☐ ☐ ^ ^ ^ ^ 7P3×4P3 ^ ^ ^ ^ ^ 7P4X3C2X5P2 ↑ 01 02 03 のうち, どの0を選ぶか. 7 10 10P6 Focus 確率を考えるときは、 同じものも区別する (同様の確からしさ) 第7章

回答募集中 回答数: 0
数学 高校生

三角形OACの高さについてです。 オレンジ色で波線が書いてあるところがわかりません。 なぜ2sinθ=-sin(120°-θ)ではないのですか。

から また、0<x2a<πであるから 数学Ⅱ 153 << 2 えに、<cosa <1の範囲において、Rはcosa= のとき最大値 2/23 をとる。 ←y< 1 X3 58 2 すなわち a= ←△ABC は正三角形。 <y-x<2 200 72 <y-x < 0 2 練習 162 0を原点とする座標平面上に点A(-3, 0) をとり, 0°0 <120°の範囲にある0に対して,次の 条件(a), (b) を満たす2点 B, Cを考える。 a) Bはy>0の部分にあり, OB=2かつくAOB=180°-0である。 (b)Cy<0の部分にあり,OC=1かつくBOC=120°である。 ただし, △ABCは0を含 むものとする。 (1) AOAB と AOACの面積が等しいとき、0の値を求めよ。 20°<<120°の範囲で動かすとき,△OAB と AOACの面積の和の最大値と,そのとき のsin0 の値を求めよ。 △OAB と △OAC はOA を共 有するから,OAB と AOACの 面積が等しいとき,それぞれの高さ が等しい。 ここで,条件から,動径 OBとx軸の正の向きとのなす角は 180°(180°-0)=0 △OAB の高さは 2 sin 0 2sin=sin(120°-Q)... √3 y B A 180°-6 A x -3 0 120° C △OACの高さは sin(120°-0) ゆえに 1 よって 2sin0= cos 0+ 0+1/2 sin 2 ゆえに 3 sin 0=√3 cos 0 8=90° は ① を満たさないから 0=90° ②の両辺を cose で割って tan0= √3 0°<< 120° であるから 0=30° 〔東京大〕 ←OBsin0 [ ←OCsin (120°-0) X3 (1) E8 ←①の右辺に加法定理 を用いた。 ←6=90° を ① に代入す ると 2sin90°=sin30° これは不合理。 803 4章 練習 章 [三角関数] [同志社大 ] 弐。 給 から, 定。 (2) AOAB と AOACの面積の和をSとすると √√3 S=-3(2 sin0+ cos 0+ =3.2/7 2 -coso+ 1/23sine) = 2424 (5sino+√3 cose) ・2√7 sin(0+α)=3√7 -sin (0+α) 2 ただしsina= √21 5√7 COS α= (0°<a<90°) " 14 14 ① 0°0<120°0°<α <90° より、0°<0+α<210° であるから, この範囲において, Sは0+α=90° のとき最大となり,そのes osa 最大値は 3√7 -sin90°= ..1= 37370 2 2 2 また、+α=90°のとき 5√7 sin=sin(90°-α)=cosa= 140-D >820 -Qua ←三角関数の合成。 の値を具体的に求め られないときは左のよ うな「ただし書きを忘 れないように。 miaa

未解決 回答数: 2
1/1000