学年

教科

質問の種類

物理 高校生

星マークの部分の解説がなく分かりません。 答えは近くに書いてあります。お願いします

バ ム (1) 水平面に達したときの物体の運動エネルギーは何Jか。 図のように、 なめらかな曲面と水平面がつながっている。 水平面から 高さ0.20mの曲面上に、 質量 0.50kgの物体を置き、静かに手をはな す。 物体は水平面上に達し、 一端が固定されたばね定数49N/mのばね を押し縮めた。 重力加速度の大きさを9.8m/s2 とする。 曲面上での運動とばねについて、以下の各問いに答えよ。 【思考・判断・ 表現 】 0.20m xF=kx² 2ばねの縮みの最大値は何mか。 Imv- 0.5 A.0.20m 0:20x ×0.5 9.8 4.9 (3) ばねの縮みがx 〔m〕 のとき、 物体の弾性力による位置エネルギー [J] との関係を表す グラフを、以下の選択肢から最も適当なものを選べ。 04970 0 09 ア U(J) 0 x (m) イ U(J)↑ 0 x(m) [J]↑ 098. 98710 0 0.98 x (m〕 10 力学的エネルギーの変化について、以下の各問いに答えよ。 【知識】 図のように、質量mの物体を、 水平面から高さんのなめらかな斜面上から、静かにすべらす。 物体は、長さLの粗い水平面を通り過ぎ、同じ傾斜をもつなめらかな斜面上を、高さまで上がった。 重力加速度の大きさをgとする。 2 (1) 動摩擦力が物体にする仕事を求めよ。 mgh (2) 時間が経過すると、 物体は粗い水平面を往復し、いずれ静止する。 物体が静止する位置の、 粗い水平面上の左端からの距離を求めよ。 (3)右側の斜面だけ、 傾斜を大きくしたとき、 物体が静止する位置は、(2)と比べてどうなるか。 以下の選択肢から最も適当なものを選べ。 ア. やや左側 イ, 同じ位置 右側 物 77410 m <問題は以上です。>

回答募集中 回答数: 0
物理 高校生

高校1年生の物理基礎の問題です。解答はあるのですが、途中式がなくて考え方が分からず困っています。途中式が分かる方教えていただけるととても助かります🙇🏻‍♀️ よろしくお願いします💦

問題1 次の問いに答えなさい。 (1)0℃は何Kか。 また, 300Kは何℃か。 (2)温まりやすく冷めやすい物体」は, 「温まりにくく冷めにくい物体」 と比べて, 熱容量が大きいか小さいか。 具 体的に数値を上げて説明しなさい。 (3) 質量 20gのアルミニウムの球の熱容量は何J/K か。 アルミニウムの比熱を0.90J/ (g・K) とする。 (4) 水の比熱を4.2J/ (g・K) とすると, 20℃の水 100gを70℃にするのに必要な熱量は何Jか。 (5) ある金属 100gに84Jの熱量を与えたところ, 温度 2.0K上昇した。 この金属の熱容量は何JKKか。 また、 比熱は何J/(g・K) か。 (6)60℃の水 100g と 30℃の水 50g を混ぜると, 温度が [℃] になった。 水の比熱を4.2J/ (g・K) とすると, 60℃ の水が失った熱量 Q1 は ( a ) [J] 30℃の水が得た熱量 Q2 は(b) [J] である。 Q1 Q2 から, ( c )℃となる。 (7)100℃の水 20gが100℃の水蒸気に状態変化するときに吸収する熱量は何Jか。 水の蒸発熱を2.3×103J/g と する。 (8)温度 0℃で, 長さが2.0×102mの鉄のレールがある。 このレールは、20℃になると, 0℃のときと比べて何m 長くなるか。 鉄の線膨張率を1.2×10-5/K とする。 (9) 気体に70Jの熱量を加えたところ, 気体が膨張して外部に30Jの仕事をした。 このとき、 気体の内部エネル ギーは何J増加したか。 (10)熱源から 8.0 × 103Jの熱をもらい, 外部に 2.4×10Jの仕事をする熱機関の熱効率はいくらか。

回答募集中 回答数: 0
Clearnoteの使い方 高校生

ノートを追加しようとするとずっとくるくるなっていてどうしてこうなるのか分かりません対処法を教えてください。一回アンインストールしました。

21:26 0 • • MM. × 2) T タイトル 難易度13 25分 数と式(練習問題) 1 [D(X+3)2 (4)(2x+5) (7)(x-3)2 (1)(x+3)(12-6) (13) (x-5)(x+1) (16) (x²+x+1)(x+1) (2)(2x+4) (5) (92x+11) (8)(x-5)(x-3) ((3) (3 (11)(x+1)(x+3)(x+2) al (499) (14) (2x+3)(x-1)(x+2)+(5-71.2+24zaj (17)(1 4)(x²-2x-5)2(x+1) (22) (6+13)3 (2)(9x+3)(x2-4)(メリ) (2)(ソープス+1)(+2) (24)(x4)(x+41 25 (3X+7g)(4x-10z) PO) OC²+74) (2x²+6x-2)-) (x-4)² (x²-x-4) ●(28)(x+y+z)(x+y+z)(9)(x+y+z)3 (3)(2x+6g)(x-4) (4)214x+6)+(-5)2 110) (1-2+2)(x+2-2) 12) (4x2+12(9+1 (1) (3x+1)² + (x-5)² (17) (x+3)² + (2x+2)+(3x+8) (6) (9x+34)² + (2x+612 (3)(x+14 (x+2 (x+1)+2(x+6) (9)2(2x-41-15xg)2 (2)(x+3)+2(2x+4×16) (+)/4(6x² + 3)² + (7x-4) (64) (3x+44)²-(2x+1)²+(x-4)² (45) (x+2)² +2 ノートタイトル < 1/1 > 並び替え 数と式 怒涛の計算問題 問題のみ 答え近日公開 23/60 ノートの紹介文 数と式をたくさん計算問題を載せました。45問。 今は問題のみです。 答えは期日公開 怒涛の計算問題シリーズ第一弾 56/600 キーワード 数 数と式 式と計算 キーワードを入力してください。 改行でキーワードが登録できます キーワードとは? 国/地域 対象学年 ○ 日本 高校生 1年生 59 完了

回答募集中 回答数: 0
1/38