学年

教科

質問の種類

生物 高校生

解いたんですけど答えがなくて 教えてくれませんか🥲🥲🥲

2.A (a) とB(b)間の組換え価が10%であったとする。 (4)AaBb (AとB, aとbが連鎖している)からできる配偶子の遺伝子の組み合わせと その比を求めよ。 (5)(4)の株を自家受精したときに得られる次世代の表現型とその分離比を求めよ。 知識 計算 二 124. 組換え価と遺伝子の位置関係●下記の表は,(1)~(5)の個体と潜性のホモ接合体を両 親として交雑した結果である。 空欄の (a)~(d)には数値を入れ, (i)~(v)は下の語群から選ん で答えよ。 ただし, AとBは顕性, aとbは潜性である 子の表現型の比 (1)~(5)からできる 配偶子の比 組換え価 [AB] [Ab] [aB] [ab] 遺伝子の 位置関係 AB: Ab:aB:ab (1)Xaabb 1 : 1 : 1 : 1 1 (2)xaabb 1 : 0 : 0 : 1 :1:1 1:0:0:1 1 50% (i) (a) (ii) (3) xaabb 7 : 1 : 1 : 7 7 1: 1:7 (b) (iii) (4)×aabb 0 : 1 1 : 0 0: 1 1:0 (c) (iv) (5)xaabb 1 : 7 : 7 : 1 1:7:7:1 (d) (v) [語群] ① AとB, aとbが連鎖 (2) Aとb, aとBが連鎖 ③ Aとa,Bとbが連鎖 オ知識 計算 作図 の ④ A, a, B, bはそれぞれ独立している 125.染色体地図 次の文章を読み,下の各問いに答えよ。 で ある生物の3つの形質に関わる遺伝子A(a),B(b),C(c) は連鎖している。 A-B間の 組換え価を求めるため, AABB と aabb の個体を交雑して得られたF1 に対して検定交雑 を行ったところ, 表現型が [ab] の個体が全体の40%の割合で現れた。 同様の実験で, A- C間では [ac] が42%, B-C間では [bc] が48% 現れた。 問1A-B, A-C間, B-C間, それぞれの組換え価を求めよ。 るき 問2 染色体地図を作成せよ。 知識 計算 126. ハーディー・ワインベルグの法則と血液型 次の文章を読み, 下の各問いに答えよ ある集団 (3000人) の血液型を調査したところ, Rh- 型が16% 存在することがわかった。 Rh-型は遺伝子dによるものであり, 遺伝子 dは潜性である。 これに対し, 遺伝子Dによ る Rh+ 型は顕性形質である。 章 • また,この集団は次の条件をすべて満たすものとする。 個体数が十分に多く、この集団への移入やこの集団からの移出は起こらない。 遺伝子D (d) に関して, 突然変異は起こらない。 結婚は Rh型には無関係になされ, Rh 型によって生存率に差は生じない。法 問1. この集団に存在する遺伝子D, d の割合を, それぞれ%で答えよ。 問2.この集団内で, 遺伝子型が Ddのヒトの割合は全体の何%か。 問3.この集団内で, 遺伝子型が DD, Ddのヒトは,それぞれ何人か。 問4.この集団の、次世代の遺伝子の割合はどのようになるか。 %で答えよ。中文 1 145

回答募集中 回答数: 0
数学 高校生

等比数列の複利計算についてです。 (2)の解説がよく分かりません。1番は出来ました✌️ 指針から解答まで分からないので詳しく教えてください🙏

432 基本 例題 15 複利計算 年利率, 1年ごとの複利での計算とするとき, 次のものを求めよ。 (1)n年後の元利合計をS円にするときの元金丁円 (2) 毎年度初めにP円ずつ積立貯金するときの, n 00000 年度末の元利合計 S, 円 7 基本 指針 「1年ごとの複利で計算する」 とは, 1年ごとに利息を元金に繰り入れて利息を計算する ことをいう。 複利計算では,期末ごとの元金, 利息, 元利合計を順々に書き出して考え るとよい。 元金をP円, 年利率を (1)1年後 — 元金 P, とすると 利息 Pr 2年後 元金P(1+r), 3年後 元金P(1+r) 2, 利息 P(1+r).r 利息 P(1+r) or n年後 合計 P(1+r) 補足 前へ 利合 消し 問 ... 合計 P(1+r)2 合計 P(1+r) 毎年 合計P(1+r)" 元金 P(1+r)"-1, 利息 P(1+r)"-l.y (2)例えば,3年度末にいくらになるかを考えると 1年度末 2年度末 3年度末 1年目の積み立て …P→P(1+r) → P(1+r)→P(1+r)3 解答 2年目の積み立て P →P(1+r) → ・P(1+r)2 3年目の積み立て P → P(1+r) したがって, 3 年度末の元利合計は P(1+r)+P(1+r)2+P(1+r) ← 等比数列の和。 (1) 元金T円のn年後の元利合計は T (1+r)" 円であるから T(1+r)"=S よって T= S (1+r)" (2)毎年度初めの元金は、1年ごとに利息がついて (1+r) 倍となる。 よって年度末には, 1年度初めのP円はP(1+r)" 円, 2年度初めのP円はP(1+r)" 円, n 年度初めのP円は P(1+r) 円 になる。 したがって, 求める元利合計 S は n-1 Sn=P(1+r)"+P(1+1) +......+P(1+r) _P(1+r){(1+r)"-1} (1+r)-1 P(1+r){(1+r)"-1} = (円) r 右端を初項と考えると、 Snは初項P(1+r), 1+r, 項数nの等出 の和である。 が

未解決 回答数: 1
1/1000