学年

教科

質問の種類

数学 高校生

(3)の問題の解説の最後の4ってどこから来たんですか?教えてください!!お願いします

事柄E の起こり方が通りあり、その おのおのの起こり方に対して事柄 F の起こ り方がn通りあるとき, 「E, Fがともに (あるいは続けて) 起こる場合の数」 は mn 通り ば,求める記入の仕方が得られる. (3) まず, 8つの数の和が偶数となるのはどのような ときか考えよう. 一般に,偶数,奇数の和の偶奇について, (偶数) + (偶数) = (偶数), (奇数)+(奇数) = (偶数), 積の法則 (偶数)+(奇数)=(奇数) を用いると,一番左の縦の列の記入の仕方は 3.26通り である. である. 他の縦の列の記入の仕方も同様にそれぞれ6通 りであるから, 再び積の法則を用いると, 記入の仕 方は全部で となる. 6.6・6・6=6通り (2) 1,2,3 すべての数字を用いて記入したものを直 接数え上げようとすると, 1, 2, 3 をそれぞれいく つずつ用いて記入するか場合分けをして計算するこ とになり、やや面倒である. そこで解答では, (1)で求めた記入の仕方が (i) 1, 2, 3 すべての数字を用いる場合, さらに,(2)の記入の仕方では, 2 (偶数) の記入 されるマス目の個数が1以上4以下であることに 着目して, 「2 (偶数)」 と 「1または3 (奇数)」が それぞれいくつ記入されるかと,そのときの8つ の数の和の偶奇を表にすると,次のようになる。 2 (偶数) 1または3 (奇数) 8つの数の和の偶奇 1つ 2つ 3つ 4つ 7つ 6 つ 5つ 4つ 奇数偶数 奇数偶数 よって、8つの数の和が偶数となるような記入の 仕方には,次の(ア)(イ) の2つの場合がある. (ア) 221または3を6つ記入する場合. (イ) 2を4つ 1または3を4つ記入する場合. 解答では、(ア)の記入の仕方を 2 2 2つの2を記入 2列の上段または下段に 一方,縦の列に記入する数字の組合せに着目し, 次のように解くこともできる. (3)の別解) 縦の列に記入する数字の組合せは {1, 2}, {1,3}, {2,3} の3組あり, 2が記入されている縦の列 2 3 の残りのマス目に 1 2 1または3を記入 2 3 3 1 残りの縦2列に 1 1 2 3 1または3を記入 の順に考えた. それぞれの記入の仕方は順に 4C2・22=24通り, 2・2=4通り, 24通り であるから, (ア)の記入の仕方は である. 24.4.4=384 通り また、(イ)の記入の仕方を 2 2 22 縦 4列の上段または下段に 4つの2を記入 残りの4マスに1または3 {1, 2} の2数の和3は奇数, {1,3} の2数の和4は偶数, {2,3} の2数の和5は奇数 であることに着目すると、 表に書かれている8つ の数の和が偶数となるような記入の仕方には,次の (ウ),(エ)の2つの場合がある. (ウ){1,3} で縦 2列, {1, 2} または {2, 3} で縦 2列を記入する場合. {1,3} で縦 2列を記入する仕方を考える. 記入する縦の列を4列から2列選び,さらに, それぞれ1, 3 を表の上段, 下段に記入すると考 えると, {1,3} で縦2列を記入する仕方は 2・22=24通り 次に,この記入の仕方それぞれに対し、残った 縦2列を {1, 2} または {2,3} で記入する仕方 を考える. 記入する数字の組合せの選び方が22通りあ り,それぞれに対して表の上段, 下段への記入の 仕方が 22通りあるから, 縦 2列を {1, 2} また は{2,3} で記入する仕方は

未解決 回答数: 1
生物 高校生

まだ学校で習っておらず分子進化のやり方がわかりません。この問題はどのように考えれば良いのか教えてください!お願いします。

基本例題 6 分子進化 図は,表のアミノ酸の違いの数からA~Dの系統関係を推定し て描いた系統樹である。XからA~Dまでの進化的距離は等しく, 化石を用いた研究から, BとC が 2.0 × 107 年前に分岐したことが わかっている。次の値を計算し,有効数字2桁で答えよ。 解説動画 全口 生物種 A B. C D A 38 表は、4種の生物種 A~D で共通して存在するタンパク質Pのアミノ 酸配列を比較し, それぞれの間で異なっている アミノ酸の数を示したものである。 この違いは, A~Dの共通祖先Xがもっていたタンパク質P の遺伝子が長い時間を経過する間に変化し,そ の結果,アミノ酸配列にも違いが生じたことを 示している。 B C3688 34 19 17 C D B (1) このタンパク質Pを構成するアミノ酸1つが変化するのにかか る時間は何年か。 C (2) A~D が共通祖先 X から分岐したのは今から何年前と推定されるか。 指針 (1) アミノ酸が異なっている数と分岐後の年数が比例すると考える。 BとCのアミノ 酸の違いが8つなので, 2.0 × 10年前に分岐後,それぞれ4つずつ変化したと考 えると1つ変化するのにかかる時間は, (2.0 × 107 ) ÷ 4 = 0.5 × 107 = 5.0 × 10° (2) 表より, AとB・C・D の間では平均 (38+36 +34) + 3 = 36か所違う。 よって, 分岐後それぞれ36÷2=18か所ずつ変化したと考えられ, (1) より, 1つ変化する のに 5.0 × 10° 年かかる。 したがって, 18個では 5.0 × 10° × 18 = 9.0 x 10 解答 (1) 5.0 × 10°年 (2)90 × 10年前

回答募集中 回答数: 0
数学 高校生

確率を求める問題なのですが点を固定して考えないで6^3としてしまいました。この方法ではなぜいけないのか教えて頂きたいです。よろしくお願い致します。

例題 13.2 4/19 半径1の円に内接する正六角形の頂点を A1, A2, ..., Ag とする.これらから, 無作為に選んだ3点(重複を許す)を頂点とする三角形の面積の期待値(平均値)を求 めよ. 2つ以上が一致するような3点が得られたときは,三角形の面積は0と 考える. 【解答】 正六角形A1A2 A3 A4 A5 A6 が内接する円の中心をO とする. A1 2=AAAA BAAAA A2 A6 88-,A,AA A3 A5 A4 無作為に選んだ1つの頂点をA,とし,固定して考える。 65 ※重複を許すので かくりの合計が1にならないことに 注意!! このとき、他の2頂点の選び方の総数は62=36(通り) あり,これ らは同様に確からしい。 車は9 そして、次の4つの場合が考えられる. (ア) 三角形 A1A2A6 と合同な三角形ができる. (イ) 三角形 A1 A3A5 と合同な三角形ができる. (ウ) 三角形A1 A2A4と合同な三角形ができる. (エ) A」 を含めて2点以上が一致する (ア)のとき,他の2頂点について, (A2, A3), (A3, A2), (A2, A6), (A6, A2), (A6, A5), (A5, As) の場合がある. よって, (ア)の確率)= 6 1 36 6 (イ)のとき,他の2頂点について, (A3, A5), (A5, As) の場合があ 対称性から1つの頂点は固定 して, 残り 2頂点の選び方を考 えればよい。 三角形の形で分類しておく. がこの検査 って ((イ)の確率)= 2 36 == 1 18 (ウ)のとき,他の2頂点について, (A2, As), (A1, A2), (Az, As),

未解決 回答数: 1
1/1000