学年

教科

質問の種類

数学 高校生

左のページは絶対値取らないでも計算できますが,右ページは場合分けする必要があるっていうのの理由を知りたいです。どういう場合に場合分けをしなければいけないかは把握してます

73 00000 (2) x-2<0 -1<0-1≥0 X-2≥0 72 基本 40 絶対値を含む方程式 次の方程式・不等式を解け。 (1)|x-1|=2 (2)|2-3x|=4 (3)|x-2|<3 指針 ただし,(1)~(4)の右辺はすべて正の定数であるから, 絶対値記号を含むときは、場合分けをして、絶対値 記号をはずして考えるのが基本である。 |A|= 次のことを利用して解くとよい。 >0 のとき 方程式|x|=cの解はx=±c -c<x<c 不等式|x|<c の解は 不等式|x|>c の解は x<-c, c<x (1)|x-1|=2から x-1=±2 x1=2 または x1=-2 x=3,-1 (4)基本 A 11=1_^ -A 例題 41 絶対値を含む方程式 P.63 次の方程式を解け。 (1) x-2|=3x (2)|x-1|+|x-2|=x AKO 絶対値記号を場合分けしてはずすことを考える。 それには, |x-1=Xとおくと |XI=2 よって X=±2 | (2) |2-3x|=|3x-2 であるから, 方程式は 3x-2|=412-3x=4から 2-3x=±4 としてもよいが、 |= {_^ |A|= -A (A≧0 のとき) (A < 0 のとき) であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち | 内の式 =0の値である。 (1)x2≧0x20, すなわち, x≧2とx<2の場合に分ける。 (2) 2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1 2 であるから,x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 (1)[1] 章 19 2 x 場合の分かれ目 41次不等式 解答 すなわち よって ゆえに 3x2=±4 答 すなわち 3x2=4 または 3x2=-4 |-4|=|A|を利用 のとき, 方程式は x-2=3x これを解いて x=-1 x=-1 は x2を満たさ ない。 よって (3)|x-2|<3から x=2, -2 の係数を正の数に [2] x<2のとき, 方程式は -(x-2)=3x 1 3 -3<x-2<3 (3),(4)x2=Xと おくと解きやすくな これを解いて x= 2 x= は x<2を満たす。 2 重要! 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないかを 必ずチェックすること (解答の の部分)。 1 各辺に2を加えて -1<x<5 |X|<3から [1], [2] から, 求める解は x= (4)|x-2|>3から x-2<-3, 3<x-2 -3<X<3 したがって x<-1, 5<x |X|>3から 最後に解をまとめておく。 -2x+3=x X<-3, 3<X これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 - をつけてをはず す。 x-1≧0, x-2 < 0 x=1は1≦x<2を満たす。 (x-1)+(x-2)=x <x-1>0, x-2≧0 2 (2)[1] x<1のとき,方程式は (x-1)(x-2)=xx-1<0,x-2<0→ すなわち 絶対値を数直線上の距離ととらえる |b-alは,数直線上の2点A(a),B(b)間の距離を表しているから, x-2は数直線」 座標が2である点と点P(x) の距離ととらえることができる。 よって、(3),(4)の不等 満たすxの値の範囲は、下の図のように表すことができる。 |x-21=3 x-21>3 \x-21=3 [3] 2≦xのとき, 方程式は 2x-3=x すなわち これを解いて x=3 以上から、 求める解は y=x-21のグラスと方程式 x=3は2≦xを満たす。 x=1, 3 最後に解をまとめておく。

未解決 回答数: 1
現代文 高校生

現代文の質問です。なぜ、コメンテーターにとって人口減少が便利な言葉なのかという問いで、答えが、実際に因果関係のない人口減少で危機を煽っても、誰も傷つけない、だそうです。なぜ、文章中にある、一般の人を騙しやすい、が理由にならないのでしょうか。

8 8 【文章Ⅱ】 ちまた 2065年に約8800万人まで減少する一方で、高齢者の割合は4割近くに上昇すると推計 ① 日本の行く末を論じる上で、巷で騒がれているのが「少子高齢化で人口減少時代に突入する から何かと大変」という話題だ。国立社会保障・人口問題研究所によれば、日本の人口は、 人口増加こそが幸福をもたらすかのような風潮だ。 ② この推計に乗っかって、新聞、書籍、経済誌、ネット記事に至るまで、人口減少時代に起こ るであろう、ありとあらゆる危機の事象予測とそれに対する処方箋が考察されている。まるで、 かわいまさし うはいかない。 ⑤ というのも、その地域の人口が減れば当然、いずれは行政規模の適正化のため、市町村を合 併しなければならない。民間企業なら地方の支店を減らすくらいで済むが、地方公共団体はそ 地方公共団体の関係者だと筆者は見ている。人口が減り続けたら、最も困るのは彼らだからだ。 版されるなど、世間の耳目を引いている。 談社現代新書)だ。これが45万部を超える大ベストセラーとなり、類似したムック本が複数出 ③その火に油を注いだのが、2017年6月に発刊された河合雅司氏の著書『未来の年表』(講 4 とはいっても、実はこの「人口減少危機論=人口増加幸福論」を支持する“世間〟とは、主に ⑥ 日本では過去3回、自治体が大合併した歴史がある。(図1)日本には1888年(明治2 年)時点で、自然集落の町単位で7万以上もの自治体があったが、翌1889年の「明治の大 合併」によって、1万5859の市町 に再編された。 らに合併が進むかもしれない。 することを目標に掲げていたから、さ 府は、もともと自治体数を1000に 治体数は1718で止まっている。政 年(平成26年)の合併を最後に全国自 合併」「平成の大合併」を経て、2014 戦後も市町村合併は進み、「昭和の大 図1 自治体の合併の歴史 1,242 10,982 1,797 8,518 1,903 1,574 663 1,994 577 568 自治体数 年月 計 市 町 村 |1888年 (明治21年 ) 1889年(明治22年) | 71,314 71,314 15,859 39 15,820 1922年(大正11年) 12,315 91 1945年(昭和20年10月) 1947年(昭和22年 8 月) 10,505 1953年(昭和28年10月) 9,868 1956年(昭和31年4 年4月) 4,668 10,520 205 210 1,784 | 8,511 286 1,966 7,616 495 1,870 | 2,303 1956年(昭和31年9月) 3,975 498 1962年(昭和37年10月) 1961年(昭和36年6月) 3,472 556 1,935981 3,453 558 1,982 913 1965年(昭和40年4月) 3,392 560 2,005 827 1975年(昭和50年4月 3,257 643 1,974 640 2,001 601 1995年 (平成 7年 4月 3,234 1999年 (平成11年4月) 3,229 671 1,990 3,218 675 ,981 | 562 1985年 (昭和60年 4月 3 月月月月月 年年年 18 786 757 2002年 (平成14年4月) 2004年(平成16年5月) 3,100 695 _ 1,872 533 2005年(平成17年4月) 2,395 739 1,317 339 1,821 2006年(平成18年3月) 2010年 (平成22年4月) 1,727 2014年(平成26年4月) 1,718 777 846 198 198 790 745 183 (総務省 「市町村数の変遷と明治 昭和の大合併の特徴」 より ) 25・・ しないことが分かる。 このように過去を振り返ると、人口 あったからだ。したがって、人口減少で地方自治体が消滅するという相関関係は必ずしも成立 増加時代にあっても自治体の数は減っている。そこには行政の効率化という大きなメリットが 2017年には約274万人と50万人以上減った。 事実、ピークの1994年には約328万人もいた地方公務員の数は、その後減少を続け、 り 自治体が合併すれば、2つの役場が1つで済むわけだから、課長や係長といったポストも1 つずつ失うことになるだろう。あるいは将来的にリストラで職場そのものを失うかもしれない。 ここう そこで、地方役人らは何とかして糊口をしのごうと、「地域に人口を増やそう 尾 Alchy 30 L

未解決 回答数: 1
数学 高校生

135番なんですけど、回答の5行目までは分かるのですが、それ以降何言ってるかわかりません。あと回答の黒塗りされている場所の3行目以降も何言ってるかわかりません。

134 組立除法を用いて, 次の多項式Aを多項式Bで割った商と余りを求めよ。 複数になっているも (1) A=4x3+x2+6x-5, B=x-1 (2) A=3x3-x2+3, B= x +2 (3) A=2x-7x2+8x-8, B=2x-3 =+6 と30余る。 発展問題 135 多項式P(x) を (x-1)2で割ると余りが 4x-5, x+2で割ると余りが4 ヒント である。このとき, P(x) を (x-1)(x+2) で割ったときの余りを求めよ。 133 (1) x=√2-1 から, x+1=√2 の両辺を2乗して整理すると x2+2x-1=0 3 2 134 (3) x- で割り、割り算の等式を作る。 135 P(x) を (x-1)(x+2) で割ったときの余りを、更に (x-1)2で割る。 ゆえに 商x-2x+ 1, 余り -5 135 P(x)= を x+2 erとする Q₁(x される。 ①に代 *)=(x-1 =(x- ここで,P(x) るから PC 針■■ 等式P(x) = (x-1)(x+2)Q(x) +R (x) を作る。 (R(x)は ax2+bx+c と表される) (x-1)(x+2)Q(x) は (x-1)2で割り切れるか ら, R(x) を (x-1)2で割ったときの余りは, P(x) を (x-1)2で割ったときの余り (=4x-5) と一致する。 よって R(x)=ax2+bx+c =a(x-1)2+4x-5 あとは, αの値を求める。 P(x) を (x-1)(x+2) で割ったときの商を Q(x) とする。 このときの余りは、2次以下の多項式または0で あるから, ax2+bx+c (a, b, cは定数) とおけ る。 よってP(x)=(x-1)(x+2)Q(x)+ax²+bx+c 更に,P(x) を (x-1)で割ると余りが4x-5で あるから P(x)=(x-1)(x+2)Q(x)+α(x-1)+4x-5 ...... ① と表される。 P(x) を x+2で割ると余りが-4であるから P(-2) =-4 また, ① から P(-2)=9a-13 よって 9a-13=-4 ゆえに a=1 したがって, 求める余りは (x-1)2+4x-5 すなわち x2+2x-4 別解指針■■■ 等式P(x)=(x-1)2Q(x)+4x-5を作る。 Q(x)をx+2で割ったときの余りをとする と,Q」(x)=(x+2)Q2(x) + r と表される。 よって P(x)=(x-1)^{(x+2)Q2(x)+r+4x-5 =(x-1)(x+2)Q2(x)+(x-1)'r+4x-5 ゆえに、求める余りは(x-1)+4x5 あとは, rの値を求める。 また、②から よって gr これを② P(x)=(x- =(x- ゆえに、 求め 136 (1) 移項 左辺を因数分 よって ゆえに x x (2) 左辺を因数 (3 よって 3 ゆえに (3)左辺を因 よって ゆえに x 2 (4) 左辺を因 よって = ゆえに (5) 左辺を因 よって ゆえに 137 (1) P(= P よって, P を因数分解 P(x) =0 カ したがって (2) P(x)=1

回答募集中 回答数: 0
現代文 高校生

至急!!高三 論表 国語 2️⃣の(Ⅰ)と⑵を解説と回答で教えてください!

2次の 筆者が言い換えをした意図の説明として適切なものを選択肢から選び、 記号で答えなさい。 <5点〉 ア. 人間の叡智の結晶である科学は絶対的なものであることを強調しよ うとしている。 イ. 人間の認識や理解には限界があることを強調したうえで、人間と科 学と自然の関係について提示しようとしている。 ウ. 人間がしばしば「自然とは…………」と言うことは、「自然」の誤った 実態なのだとまとめようとしている。 2 次の文章を読んで、後の問いに答えなさい。 同生きものであるかぎり、ひとにはどうしても自力でしなければな らないこと、しつづけなければならないことがあります。16食べるこ と、そのために食材を調達し調理すること、食べたあとのゴミや排泄 物を処理すること。赤ちゃんをとりあげること、子どもを育てるこ と、子どもに世の中のことをいろいろ教えること。身近に病人がい ればその看護をすること、おとしよりの世話をすること。 ◎人を看取り、 見送ること。人と人のあいだでいろいろめんどうなもめ事が起これ ばそれを調停すること、防犯に努めること、などなどです。これら はひとのいのちに深くかかわることなので、細心の注意を払っておこ なわなければなりません。 っていくのです。 さいしん せんじん だいこう 先人たちは、これらの「いのちの世話」を確実に代行するプロフェッ ショナルを養成し、またその「世話」の場所を公的な施設として整備 してゆきました。 (「特別授業 3.11 君たちはどう生きるか』所収 はら みと はいせつ 5/7まで 1 次の空欄①~⑤に入る文を、文章中の同~から選び、記号で答えなさい。 ※一つの空欄に対して、複数の記号を答えてもよい。 各点〉 ※同~は文記号。 この文章の〔 〕の部分は、「いのちの世話」の具体例を述べ ている。〔2〕の部分の具体例として、〔1〕がある。要約 を行うためには、まず〔 〕を省略する。そして、〔2〕、 〔3〕、〔4〕をもとに、組み立てていくとよいのだが、こ の文章の場合、筆者の目的意識から考えて、最も重要なのは ⑤〕なので、〔5〕を中心に要約する。 久 ②1にしたがって、この文章を百字以内で要約しなさい。 <10点〉 吉田清一 「支えあうことの意味」河出書房新社より)

回答募集中 回答数: 0
日本史 高校生

これらのページの答えを教えてください。できればこのワークの全ての答えの写真をください。

第 章 日本文化のあけぼの 2 おもな打製石器 打製石斧、 おもに木製棒の先端に取り付けて狩猟用の石槍に 使用したナイフ形石器や尖頭器、 旧石器時代の末には (3)が広まる Y Point 中国東北部やシベリアでは、 日本に先がけて細石器の著しい発達がみら 3 1 文化の始まり 5 日本列島と日本人 p.6~ 1 人類の誕生 (1) 人類誕生 (約700万年前) 猿人(アウストラロピテクスなど)→人→旧人(ネアンデルタール人など) →新人(ホモサピエンス) と変遷 Point 現代人は新人に属す。 (2) 使用道具による時代区分 (1)のみの使用を旧石器時代、 ( 2 )が加わる時代を新石器時代と 呼称 世界史では、石器時代以降→青銅器時代→鉄器時代と続く (3) 地質学の新生代第四紀を約1万年前で区分、氷河時代に当たり氷期と簡 氷期が繰り返された ( 3 )と、それ(最終氷期)以後を( 4 )と呼称 2 日本列島への渡来 こうしんせい (1) 更新世の氷期、 大幅に海面下降し一時大陸と陸続き →ナウマンゾウ等が日本列島に渡来 (2) 最終氷期にほぼ大陸と陸続き →日本列島に人類が渡来 (推定=約3万8000年前) (3) 日本列島における更新世の化石人骨の発見 またじん みなとがわじん やましたちょう どうじん しら 静岡県の浜北人 ( 5 )県の港川人 山下町第一洞人 白保竿根田原 a どうじん 洞人など あかし かんしんせい b 上記はすべて「新人」 段階 *兵庫県 「明石人」は更新世 or 完新世で諸説 じょうもん (4) 日本人の原型=アジア大陸の人々の子孫→ 縄文人+弥生時代以降の渡来人 との混血(縄文人の遺伝子→アイヌの人々や沖縄など南西諸島の人々に強く継 承) ( Point 縄文人の遺伝子を強く継承した人々が、 日本列島の北と南(北海道と南 西諸島)に多く認められる点と、その後の弥生文化の列島での広がりと の関連性に注目。 旧石器人の生活 p.8~ 1 列島と旧石器時代 あいざわただひ しらた (1) 1949年、 相沢忠洋が群馬県 ( 1 ) ( 2 ) (更新世の地層)から打製石 器を発見以後、各地で更新世の地層から石器の発見があいつぐ (北海道白滝、 長野県野尻湖など) (2) 人々は大型動物を追って移動、 洞穴やテント式小屋を住まいに狩猟採集の 生活 れる。 縄文文化の成立 p.8~ 1 自然環境の変化 (1) 約1万年余り前、 氷期が終了して気候が温暖化、 地質学では更新世から (1)へ: 海面上昇し、 現在の日本列島がほぼ成立→縄文文化へ しょうとうじゃりん a 植生が変化して東日本で落葉広葉樹林、 西日本で 照葉樹林広がる →木の実の採集や根菜類の食料化 b 大型動物が絶滅→動きの速いシカイノシシなど、 中 小動物が狩猟対象に (2) 縄文文化のおもな特徴 b 打製石器に加え、 ( 3 ) が出現 a おもに食料を煮るための(2)が出現 C 俊敏な中小動物を狩るための(4)が出現 そうそう 2 縄文土器 草創期の土器は、世界最古の土器の1つ (1) 縄文時代を土器変化で区分: 草創期→早期→前期 中期 後期 晩期 (2) 特徴: 低温で焼かれた厚手で黒褐色の土器 つめがた (3)文様 草創期の無文 隆起線文 爪形文からしだいに細目の文様が増加 (4) 形状: 中期に火炎土器、 後期には多様化、 晩期には東日 本一帯で精巧な亀ヶ岡式土器が出現。 逆に西日本 では器種が減少へ * 年代測定には、放射性炭素14年代法や年輪年代法など 縄文人の生活と信仰 p.9~ 亀ヶ岡式土器 1 植物性食料の採集→管理、増殖、 栽培へ (1) 木の実 根菜類の採集、 ダイズなどマメ類、 エゴマなどの栽培 (2) 土掘り用や食料加工用の打製石器、 磨製石器が出現 (打製石器との併用) いしぐわ いしざら けいと せ →打製石斧 (石鍬) 石皿、 磨石、石匙 (=動物の皮なめし用)など すとう (3) 縄文晩期に水稲農耕の可能性を示唆 佐賀県菜畑遺跡や福岡県板付遺跡など ぎょう 2 狩猟漁労による動物性食料の確保 (1) 狩猟:イヌを狩りにともない、(1)(先に 鉄)や槍でニホンシカイノシシなどを捕獲 からかいふわらかんのんとう J Point 千葉県の加曽利貝塚や藤原観音堂貝塚など各 地でイヌを丁寧に埋葬した例が発見され、 イ ヌを狩りの重要なパートナーとしていたこと が推察される。 イヌの埋葬 (藤原観音堂貝塚) 6 第1章 日本文化のあけぼの 3 2 3 1 文化の始まり

回答募集中 回答数: 0
1/130