学年

教科

質問の種類

数学 高校生

7. [1]のq≧1は0乗が存在しないのでkが自然数であることより示す意味がわかるのですが、[2],[3]のq≧0は何故必要なのでしょうか?? また右に赤で書いてある解説が理解できません。[2],[3]ではk=1でも2の指数は自然数だし、 k=2でも2の指数は自然数ではない... 続きを読む

20 00000 重要 例題 7 整数の問題への二項定理の利用 kを自然数とする。 2を7で割った余りが4であるとき, kを3で割った余りは 2であることを示せ。 解答 kを3で割った商を」 とすると, は 3g, 3g+1, 3g+2 のいずれかで表される。 ・・・・・・ A 指針 2=7l+4 (は自然数) とおいてもうまくいかない。 ここでは, んが 3g, 3g+1, 3q +2 3で割った余りが 0 12 ( (gはkを3で割ったときの商) のいずれかで表されることに注目し,k=3g+2 の場合だ け2を7で割った余りが4となることを示す方針で進める。 例えば,k=3gのときは, 2=23" = 8°であり, 8°= (7+1)" として 二項定理を利用すると 2を7で割ったときの余りを求めることができる。 [1] k=3g のとき, g≧1 であるから 2'=23°=(2°)°=8°=(7+1)* = C79+,C,79-1+ +9C9-17+Cg =7₂C79-1+ C₁79-2 ++C+1 よって2を7で割った余りは1である。 [2] k=3g+1 のとき, g≧0であり q = 0 すなわち k=1のとき q≧1のとき 2=239+1=2・237=2・8°=2(7+1)。 2²=2=7.0+2 =7.2(C79-1+,C179-2++qCq-1)+2(*) よって2を7で割った余りは2である。 [3] k=3g+2のとき, g≧0であり q=0 すなわちん=2のとき q≧1のとき 2=239+2=22・23=4・8°=4(7+1)。 2"=2"=4=7・0+4 =7-4(C₂79¹+C₁79-²++gCq-1)+4 [類 千葉大 0 ( 別解 合同式の利用。 A までは同じ。 8-1=7.1 であるから 3で割った余りは0か1か 2である。 Ak 3, 6, 9, ...... <二項定理 よって2を7で割った余りは4である。 [1]~[3] から, 2を7で割った余りが4であるのは, k=3g+2のときだけである。 したがって, 2 を7で割った余りが4であるとき, kを3で割った余りは2である。 重要 6 は整数で, 2= 7× (整数)+1の形。 k=1, 4,7, ◆二項定理を適用する式の指 数は自然数でなければなら ないから, q=0 と g≧1 で 分けて考える。 (*)は[1] の式を利用して導いている。 k=2, 5, 8, ······ [1] の式を利用。 合同式については, 改訂版チャート式基礎からの数学Ⅰ+Ap.492 ~ 参照。 8≡1(mod 7) [1] k=3g (g≧1) のとき 2F=239=8°=19≡1(mod 7) [2] k=3g+1(g≧0) のとき g=0 の場合 2=2=7・0+2 2k=239+1=8°•2=19.2=2 1の場合 [3] k=3g+2(g≧0) のとき q=0 の場合 2″=4=7・0+4 2=239+2=89・2²=1°・4=4 g≧1の場合 以上から2を7で割った余りが4であるとき, kを3で割った余りは2である の整数で+1が3で割り切れるものト 自然数nに対し a b (mod m) のとき a=b" (mod m)

解決済み 回答数: 1
数学 高校生

積分漸化式です。 (4)は、I(m+n-1,1)が現れるまで繰り返すようですが、このm+n-1と1はどのようにして出てきたのですか?

思考プロセス ★★★ 例題244 mnを自然数とする。定分I(mm) = f(x)dx について (1) I(m, 1) を求めよ。 (2) I(m,n)=I(n, m) を示せ。 (-)-40- (3) n ≧2のとき,I(m,n) をI(m+1, n-1)を用いて表せ。 (4) I(m,n) をm, nを用いて表せ。 《@Action 対応を考える 積分漸化式は, 部分積分法や置換積分法を利用せよ (2) I(n, m) = -S₁x (1-x) dx X 1 (m, n) = √ √x (¹²) (4) (3) ← とおく (3) I(m,n) とI(m+1, n-1)の関係を考える。 I(m,n) = x" (1-x)"dx← = S²² 次数下がる (微分) x (1-x) dx 次数上がる (積分) I(m+1, n-1)= = Sx (1) I(m, 1) = +1 I(m,n) = /(m+1, n-1)=... -1 =√₁ (x² fx™ (1-x) dx xm-xm+1)dx 等しいことを示す。 |x+1 (1-x)"-1dx xm+1 .m +1 mm +2 m+2 (2) 1-x=t とおくと, x=1-t であり dt dx =-1 xtの対応は右のようになるから I(m,n)= -L₁₁ 1 1 1 m+1 m+2 (m+1)(m+2) (1-t)mtn (-1)dt 積の形であるから, 部分積分法 (,1) (1) の利用 x 0→1 t 1 → 0 =fra-t)"de - L'x²-x)- =fx x"(1-x)"dx = I(n, m) ( 東京電機大) 例題243 部分積分法を用いて求め ることもできる。 ola dx=-dt MGA ¶ (3) n ≧2のとき I(m, n) = (43)より、 北m+1 [***(1-x) dx = f(+1)(1-x)" de Sx d= m+ dx mm+1 ・ (1 − x)" ] ) + S •n(1-x) dx xm4 m+1 I(m, n) n m+1 n m+1 m+1 m+1 Jo n m+1 ≧2について n m+1 n-1 m+2 JM +1 1 (1-x)"-1 dx I(m+1, n-1) -I(m+1, n-1) I(m+2, n-2) . n-2 n-1 m+2 m+3 2 m+n- n! (m+1)(m+2)(m+n-1) m!n! (m+n+1)! これは,n=1のときも成り立つ。 したがって I(m,n)= I(m+n-1,1) 1 (m+n)(m+n+1) m!n! (m+n+1)! (x) B(p,q+1)= 4 B(p, q) p+q たが, b, gが正の数であるときの定積分 B(p, y) = 数と呼ばれている (大学数学の内容)。 ベータ関数には次のような性質がある。 (ア) B(p, g) = B(q, b) (イ) pB(p,q+1)=qB(p+1,q) (ウ) B(p +1,g)+B(p, g+1) = B(p,q) 部分積分法を用いる。 √x+(1-x) dx =I(m+1, n-1) I(m, n) n m+1 I(m+1, n-1) -I(m+1, n-1) n-1 m+2 I(m+2, n-2) I(m+2, n-2) n-2 m+3 これらの関係を I (m+n-1,1) が現れる までくり返す。 (m+1)(m+2)(m+n+1) I(m+3, n-3) Point ベータ関数 例題244では,m,nが自然数であるときの定積分I(m,n)= = fox" x" (1-x)"dx を考え P1(1-x)dx はベータ関 (m+n+1)! m! 例題244 (2) と同様 例題244 (3) と同様 6章 定積分 ■244 例題 244 の結果を用いて, 定積分 ∫ x (1-x)* dx を求めよ。 また,自然数 m, nに対して S" (x-a)(x-B)" dx を求めよ。 p.445 問題244

解決済み 回答数: 1
1/4