学年

教科

質問の種類

数学 高校生

√1+f(x)'の公式に当てはめて解いたのですが、回答の答えにはなりませんでした。これでは解けないのでしょうか?教えて頂きたいです。よろしくお願いします。

(5)) 2sin/128-tcos/1/2 (s)tsin/1/2 1 (6) (L) 12 (6XL)*+* 2 ■解説 ≪媒介変数表示された曲線の形状と長さおよび面積≫ =0とおくと, sin00 (π<< より 00 dy sin O (1)・(2) dx 1 + cos 0 このときy=0である。 また, -π<< πにおいて よって, 曲線Cは点 (0,0)においてx軸に接する。(→(あ) (レ dx de から,g(-π) <x<g(x)より =1+cos0 >0よりx=g(0) は単調増加だ dy さらに, de x=(→(う)(え)) -=h' (0)=sin0より,y=h(0) の増減表は次のようになる。 0≦y<2 (→(お), (カ)) 1 + 0 7 これより (020g+1) なお, 曲線Cの概形は次のようになる。 O 2 2 0.200 大阪 dy d0-> 2cos2d0-4sin-4sin (4) Pr(t+sint, 1-cost) 0=1のとき 方程式は sint = 1+cost y-(1-cost) - do (-4431) sint dt 1+cost であるから、もの (x-(t+sint)) (0<K<x) ここで,y=0とおくと, (1-cos't) =sintlx-(1+sin()), sint*0より よって -(1-cos³t) sint +(t+sint) =-sint+ (t+ sint) =t (→()) Qi(t. 0) =OP-OQ Q.P= = (t+sint, 1-cost) - (t, 0) = (sint, 1-cost) 2. =(2sin/12 cos/122sin2-12) = 2 sin 27 (cos 27. sin 172) ...... ① 0 (-π) 0 (π) dy nie. 0 do Ob y 2 となるので、Q.P がx軸の正の向きとなす角は 12 ラジアン( 10203-1 0 (-π) ... 20 x 一π x y 2 π (π) 0 V 0 V π 2 とする。また,P, Q 接線がそれぞれPi, Q 接線に移動した (5) 回転する前のC上の点Pがx軸との接点になったときの曲線をC とする。このとき t OP' = L (t) = 4 sin 2 dx (3) + do (d)² = (1 + cos 0)² + (sin 0) 2 =2(1+cos0)=4cos' 0≧≦t<zにおいてcos->0であるから 20 8-2 ①よりP/Q=PQ=2sin であるので OQ=OP-P/Q=4sin/2-2sin/2 = 2 sin/20 また,Q,R, OQtであることと,(4)の結果より

回答募集中 回答数: 0
数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
1/51