学年

教科

質問の種類

数学 高校生

答えがこれであっているか教えてください🙇

51 (木) まずは小問集合。 大事な問題は繰り返しやって、 自信をつけていきましょう。 次の を正しくうめよ。 (1) 不等式3(x-2) <2x-5…① の解は(ア)である。 また,不等式①を満たすことは,x<0であるための(イ)。 (イ)に当てはまるものを,下の①~④のうちから1つ選べ。 ① 必要十分条件である ② 必要条件であるが, 十分条件ではない 十分条件であるが, 必要条件ではない ④ 必要条件でも十分条件でもない (2) 次のデータは、あるクラス10人の数学の小テストである。 7,5,8,6,7,8,10,4,3,9 このとき,中央値は (ウ) であり,第1四分位数は(エ)である。 (3)男子2人、女子5人, 計7人の生徒がいる。 この中から委員3人を選ぶ 方法は、全部で (オ) 通りあり、このうち少なくとも1人は男子である 選び方は、全部で (カ) 通りある。 (4) (2x-y) の展開式におけるxyの係数は (キ)である。 また、 (x+2y-3z)の展開式における xy'z の係数は (ク)である。 (1) 3(x-2)<2x-5 3xc-62x-5 20 6.5.4×80303 (4)6G(2x)(-\パー(54 xC1(P) ③- ③ -(1) キ (2) 1,3,4,5,6,7,7,9,10 中央値 6.5-) # 第1四分位数4(土) 4. -1609343 プリシの係数は160(t) また、{(x+2%)-3/24の展開式における 窓の係数は、 4C1=4 (x+2g)におけるxyの係数は 3C2.2°=3×4 (3)7C3 7.65 =35通り(オ) また、少なくとも1人は男子なのは 38.5 6C2 15通り(カ) 入り サ サ =12. (xy2zの係数は4×12=2817

回答募集中 回答数: 0
数学 高校生

数I データの分析について 第3四分位数が3番目だとするのが分かりません

例題11 箱 右の図は、2つの漁港A. B のある年における各月の水 揚げ量 (kg) の箱ひげ図である。 次の①~④のうち、この 箱ひげ図と矛盾するものを1つ選べ。 ただし, 漁港 A, Bとも、同じ水揚げ量の月はなかったものとする。 ① 水揚げ量の中央値は, 漁港Bより漁港Aの方が小さい。 ② 水揚げ量の範囲は、 漁港Aより漁港Bの方が大きい。 漁港A 漁港B 100 200 300 ③漁港Aで3番目に水揚げ量が多かった月の水揚げ量は400kg 以上である。 ④ 漁港Bで200kg未満の水揚げ量の月は4か月あった。 考え方 最大値、最小値,四分位数を読み取り, 正誤を判断する 正誤を判断する問題では,正確な値まで読み取る必要のない問題もある。 選択肢 ①〜④に関する必要な情報を抜き出して, 正誤を判断する。 ポイント ① 正誤を判断 → (解答) 400 500(k [類 東北文化学 ① 漁港Aの中央値 (約280kg) は漁港Bの中央値 (約305kg) より小さいから、正 ② 漁港 A, B のおおよその範囲はそれぞれ 420-100=320 (kg), 500-150=35 よって, 漁港Aより漁港Bの方が範囲が大きいから,正しい。 ③漁港Aの第3四分位数は400kg であるから, 漁港Aで3番目に水揚げ量が多 月の水揚げ量は400kg以上であり, 正しい。 ④漁港Bの第1四分位数は200kgであり、 同じ水揚げ量の月はない。 よって, 200kg未満の水揚げ量の月は3か月であるから, 矛盾する。 したがって, 矛盾するものは 4 答

回答募集中 回答数: 0
数学 高校生

この問題答え見てもよくわかりません

精講 133 計算の工夫 次のデータは5人のハンドボール投げの記録である。 28,α,24,b,c (単位はm)+01+819~ このデータでは、次の4つの性質が成りたっている. (ア) 24 <a<28<b<c (イ) 第3四分位数は33m (ウ) 平均値は 29m (エ) 分散は 14 このとき, a, b, c の値を求めよ. 文字が3つありますので,第3四分位数, 平均値,分散の定義に従 って等式を3つつくり、連立方程式を解けばよいだけですが,数値 が大きいので,計算まちがいが心配です. そこで,平均値がわかっているので,すべてのデータから平均値 29m を引 いた新しいデータを考えることで,計算量を減らす工夫を学びます。 解答 与えられたデータから29m をひいた数を 新しいデータとして考える. すなわち, 小さい順に, -5, a-29, -1, 6-29, c-29 を考える. α'=a-29,b'=b-29, c′'=c-29 とおく . (イ)より, b+c=33 だから,b+c=66 2 : b'+c'=8. ...... (ウ)より,24+α+28+b+c=29・5 ∴a+b+c=29・5-52 よって, a'+B'+c'+29・3=29・5-52 a'+b'+c′=29・2-52 ③) 26-166'+64-40=0 '-86'+12=0 (b'-2)(b'-6)=0 6'2 または 6 6'=2のとき,c=6 B'=6 のとき, c'=2であるが, =44 bc より, B' <c' だから,このときは不適. よって, '=2,'=6 以上のことより, a=27,6=31,c=35 注もし、元のデータのまま解答をつくると、 でき上がる 6+c=66,a+b+c=93, (a-29)2+(6-29)^2+(c-29)²= この時点で, a'=a-29,6'=6-29, c'=c-29 とおきた せん. 演習問題 133 視力検査の数値のように,小数点以下を含むデー 仕方は, 137で学びます. G 次のデータは5人の体重測定の結果である 57,64, a,b,c (単位はkg) このデータに対して、次の4つの性質が (ア) 57 <a<b<64 <c (イ) データの範囲は 10kg (ウ) データの平均値は 62kg (エ) 11.6

回答募集中 回答数: 0
生物 高校生

5番が正しい理由がさっぱわからないので教えてください

10000 206 出典:立行政法人統計センタ 1400 SSDSE-C-2021により作 の階級に含まれる。 また、四分位範囲として 47 226 0000円以上 22000円未満 000円以上 28000円未満 28 (Coo 29500 牛肉の年間支出金額 (2018年~2020年の平均値) 1500 34000 40000 (円) (円) 畿 (7市) 中国・四国 (9市), 九州 沖縄 (8市) の6つの地域に分けたときの箱ひげ図である。 のデータについて 47 市を北海道・東北 (7市) 関東 (7市) 中部 (9市) 近 40000- 38000- 36000- 34000- 32000- 30000- 28000- 26000- 24000- 22000- 20000- 18000- 16000 14000- 28000 12000- 10000- 北海道 ・東北 関東 中部 近畿 中国 九州 ・四国 ・沖縄 図2/牛肉の地域別年間支出金額 (2018年~2020年の平均値) (出典: 独立行政法人統計センターSSDSE-C-2021により作成) と計量 +cos 150° tan 30° √3 =0 2)+(cos0-√2 sin 0 ) cos0 + 2 cos' 20-2√2 sin 0 cos 0+2 sin² 3 sin0 0 であるから 26 データの 分析。 (2) 図1と図2から読み取れることとして,次の①~⑤のうち、正しいものは と ウ 本気である。 なお、各市の年間支出金額はすべて異なる。 H オ の解答群 (解答の順序は問わない。) 29500 ¥7500 15000 20 26500 14500 13000 - 2650 145 29500 -14500 ウ 15000 =2√6 30°-0) ア | の階級は、6つの地域の市をそれぞれ1つ以上含む。 6つの地域の中央値のうち、図1のデータの中央値に最も近いのは関東である。 6つの地域について、どの地域の四分位範囲も、図1のデータの四分位範囲より小さい。 近畿は100g当たりの牛肉の価格が他の地域よりも高い。 近畿で30000円未満の市は1つである。 16000円未満の市のうち, ちょうど半分が北海道・東北の市である。 6 1+2/6 り (配点 10 ) AB in C CA: AE

回答募集中 回答数: 0
数学 高校生

例題169についてです。 自分の答えだと、どうしても答えが28通りになってしまうのですが、何故でしょうか、 あと、151-123+1の意味を教えて欲しいです

252 中央値がとりうる値 基本 例題 169 基本 167 000 a この値は 次のデータは、6人で行ったあるゲームの得点である。 ただし, 数である。 138.79 123,185,151,a (単位は点) aの値がわからないとき、このデータの中央値として何通りの値がありうる 指針 中央値の問題は大きさの順(小さい順) にデータを並べる ことが第一である。 データの大きさがあ このとき、データの大きさが6であるから, 3番目と4番目の 値の平均が中央値となる。 L 中央の2つの値の早 四分位数 基本 次のデ ある。 (1) そ いを CHART 中央値 データの値を、値の大きさの順に並べて判断 解答 データの大きさが6であるから, 中央値は,小さい方から3番目と4番目の値の平均 ある。 α以外の値を小さい順に並べると 79,123,138, 151, 185 この5個のデータの中央値は 138 よって, αを含めた6個のデータの中央値は (2) そ 求め (3) そ 基つ 指針> ( (3 123+138 138+151 138+α 2 (ただし, 124≦a≦150) 2 2 のいずれかである。 138+α ゆえに,中央値は (ただし, 123≦a≦151) 2 αは正の整数であるから, 中央値は151-123+1=29 (通り)の値がありうる。 [補足] [1] a≦123のときの中央値は 123+138 =130.5 2 [2] α≧151のときの中央値は 138+151 2 =144.5 [3] 124≦a≦150のときの中央値は a+138 2 [1] α, 79, 123.138.151. I または 79,α, 123.138.151. [2] 79.123.138.151.. または 79, 123, 138, 151, 185 [3] 79, 123. a. 138, 151 または 79, 123, 138.α.151. 解答 (1) A A班の (2) A] ! Q2 B班- ゆえ Qz (3)A B班 次のデータは10人の生徒のある教科のテストの得点である。 ただし、xの値は ③ 169 の整数である。 4355,x64,36, 48, 46, 71,6550 (単位は点) xの値がわからないとき、このデータの中央値として何通りの値がありうるか B班 れる 練習 170

回答募集中 回答数: 0
1/17