学年

教科

質問の種類

生物 高校生

写真の穴に入る言葉をできる限り教えていただきたいです。

第一章 生物の特徴 ~光合成~ 〔前回までの知識を使って考えよう〕 光合成は代謝の中でも簡単な物質から複雑な物質を合成する (1同化) 光合成は細胞内の (2 ミトコンドリア 異化)の1つである 教科書 : p.24~61 2. 呼吸光合 植物のエネル <光合成> 葉緑体)で行われている 葉緑体の中には光合成の化学反応を促進させる (3 酵母 酵素 )が含まれる 太陽の (24 1.光合成 ~植物はエネルギーをどのようにして得るのか?~ 植物のエネルギー生産 ~植物だって生きていくためにエネルギーが必要!!~ 細胞小器官の(4細胞質基質)で(5解糖系)によって有機物(グルコース)を分解 → 生命活動に必要な (6 )を合成 <呼吸> 有機物の調達 (1) 光合成が起きる場所 植物細胞の(7葉緑体)で起こる←光合成色素である(8クロロフィル )が含まれる 植 を材料に(13 作られた有機物は (14 エネルギー源となる <光合成の過程> (2) 光合成とは? (9光エネルギー)を利用して、まずADPとリン酸から (10ATP)を合成する。 さらに、 ATP に含まれる (11 エネルギー) を利用して、無機物である (12 )を通って植物体のいろいろな場所に運ばれ、生命活動の )などの有機物を合成すること ※植物のよ = (5 動物のエ <光合成 <呼吸> (15 太陽 (17 ADP + P <反応式のようにまとめると・・・> グルコースを合成する場合 重要 光合成の反応式 (18 (19 (20 有機物 ※動物の。 込んで (3) 光合成の過程を詳しく見てみよう 〜大きく2つの過程を経て行われる~ 教P53 発展 《過程》 ① 光エネルギーの吸収とATPの合成 反応がおこる場所 葉緑体の (21 )膜 光エネルギーがクロロフィルなどの光合成色素に吸収され, ATPが合成される ②ATPのエネルギーを用いて、 CO2から有機物を合成: (22 反応がおこる場所 葉緑体の ( 23 ①の反応で合成された物質とATPのエネルギーを用いて、CO2から有機物が合成される ⇒ウラ面、参照してみよう! 《ここから下は

回答募集中 回答数: 0
数学 高校生

アとウの問題の最後って逆の確認はしなくていいんですか?

8 恒等式 - (ア) 恒等式 4+7x3-32-23-14 =a+bx+cx(x-1)+dx(x-1)(x-2)+ex(x-1)(x-2)(x-3) が成り立つとき, 定数ae の値を求めよ. (九州産大・情報科学, 工) (イ) 次の式がxについての恒等式になるように,定数a, b, c の値を定めなさい。 x3+2x2+1=(x-1)+α(x-1)2+6(x-1)+c ( 流通科学大) (ウ) x+y=1を満たすx, yについて,ax2+bxy+cy2=1が常に成り立つように a, b, c を定めよ. (龍谷大・理工(推薦)) 係数比較法と数値代入法 多項式f(x) g(x)について, f (x)=g(x) が恒等式になる条件を とらえる主な方法は,次の①と②の2つである. 1 f(x)とg(x)の同じ次数の項の係数がすべて等しい. ② f(x), g(x) の (見かけの) 次数の高い方をn次式とするとき, 異なる n+1個の値に対して,f(x)=g() が成り立つ. x-pで展開 (イ)の右辺を 「x-1について展開した式」 というが, どんな多項式も につい て展開した式として表すことができる. この形にすれば (x-p)2で割った余りなどがすぐに分かる. (イ)を右辺の形にするには, 左辺の各項を,r={(x-1) +1}などとして展開すればよい. 等式の条件 1文字を消去するのが原則である(本シリーズ 「数Ⅰ」 p.16). 解答豐 (ア) 与式の両辺にx=0を代入して,a=-14. αを移項し両辺をxで割って, x3+7x2-3x-23 =b+c(x-1)+d(x-1)(x-2)+e(x-1)(x-2)(x-3) 両辺に x=1,2,3,0を代入して, -18=6,7=b+c,58= 6+2c+2d, -23=b-c+2d-6e b=-18,c=25, d=13, e=1 (イ)x+2x2+1={(x-1)+1}3+2{(x-1)+1}2+1 ={(x-1)+3(x-1)2+3(x-1)+1}+2{(x-1)2+2(x-1)+1}+1 =(x-1)+5(x-1)2+7 (x-1)+4 (α=5,b=7,c=4) (ウ) y=1-xであるから, ax2+bx (1-x)+c(1-x)2=1 これがェによらず成り立つから,r= 0, 1, -1 を代入して, c=1, a=1, a-26+4c=1 .. a=1,c=1,6=2 注 (ア) ①x=1を代入して♭を求め, bを左辺に移項し両辺をx-1 で割る'代入'と '割り算’を繰り返して求めることもできる. (イ)与式にx=1を代入し,c=4. 両辺をxで微分して, 3x2+4x=3(x-1)2+2a(x-1)+b.x=1を代入し, 6=7. (以下略) ・① 多項式の恒等式が両辺ともにェ を因数に持てば, 両辺をェで割っ た式も恒等式. e=1であることは、 元の式の両 辺のの係数を比べることでも 分かる.このような考察をして ミスを防ごう. ← (x+y)²=1となる. 次にx=2を代入してcを求め,c を移項して2で割る. ←代入と微分"を繰り返して 求めることもできる. 波調

回答募集中 回答数: 0
1/670