学年

教科

質問の種類

数学 高校生

ナニヌネなんですが、平行四辺形と三角形に分けると答えが合いません。この方法はできませんか?

D A Ape App=a 6 Be 16 b ~ BI ↑ 状態 ① 状態 ② 状態 ③ 状態④ "Po D D Ave ・D Po=B 5 5 6 5 CB O B 5 C 状態⑧ 状態⑦ 状態⑥ 状態 ⑤ 34 図3 34 15 9+25-99 30 (1)AB=5,BC=1,CD=6,DA=3の場合を考えよう。 (i) 図3の状態②のとき 30 クケ COS α = であることから, α = サシスである。 2 120 図3の状態⑥のとき 3 25+9-25 △ABD は二等辺三角形であり, cosβ= ソタ である。 10 30 「羽ばたき角」 α-βの値はチッ 48 図3は、円盤の回転に伴って, 線分 BC, CD, DA がどのように動くかを示 したものである。 ただし, ∠BAD=8 (0°<8 <180°)とする。 状態②のとき3点 B, C, D がこの順で同一直線上に並び, 0は最大となる。 このときの0をα とおき, 「上への羽ばたき角 α」 とする。 状態⑥のとき3点 C, B, D がこの順で同一直線上に並び, 0 は最小となる。 このときの0をβとおき, 「下への羽ばたき角β」 とする。 <α-B<(チッ+1) である。 (ii) 図3の状態⑧において, 0=90°であるとき テ cos BCD= ト である。 2 () 図3の状態① において, AD / BC であるとき a 120130 72 2 73 48 36-25 ニヌ 四角形ABCD の面積は である。 ネ 2 25. また, α-β を 「羽ばたき角」 とする。 (数学Ⅰ 数学A第1問は次ページに続く。) い 1+36-34 S 6 6 (3+1)× (数学Ⅰ 数学A 第1問は次ページに続く。) 9+25-2151000=36.1-2,6005

解決済み 回答数: 1
1/390