学年

教科

質問の種類

物理 高校生

高校物理です。 類題の解き方を誰か教えてください。

10 例題② 導体棒の運動 (発電機の原理) 鉛直上向きで磁束密度B[T] の一様 磁界中に, 間隔 [m] で水平に置か れた直線状の平行な2本の導線と、 抵抗値 R[Ω]の抵抗をつなぎ,軽い導 体棒ab を置く。 導体棒には軽くて伸 a B M 支える。静かに手をはなすと, おもりは下降し始め、しばらくして おもりと びない糸を張り, 滑車を通して他端に質量M[kg]のおもりをつり下げ、手で 導体棒は一定の速さになった。 重力加速度の大きさをg[m/s] として、次の問 問いに答えよ。 ただし, 導体棒の質量や抵抗, 導体棒と導線との間の摩擦力,回 路を流れる電流がつくる磁界は無視できるものとする。 (1)回路を流れる電流の強さ I[A]を B, l,M,g を用いて表せ。 一定の速さ” [m/s] を B, l, R, M, g を用いて表せ。 (3)重方の仕事率 P〔W〕を B, l, R, M, g を用いて表せ。 指針 (1) 等速度運動をしているおもりと導体棒にはたらく力はつり合っている。 (2)に生じる起電力を”を用いて表し, キルヒホッフの法則を用いる。 #4 (1) 導体棒には,糸の張力 T[N] と電流が磁界から受ける力 IBI [N], おも りには糸の張力T [N] と重力 Mg 〔N〕 がはたらいている。おもりと導体棒は等速度 運動をしているので,それぞれにはたらく力はつり合っている。よって, T-Mg=0 ・① T-IBl=0 ......2 式①,②より,IBl=Mg よって, I= ・[A] Mg Bl (2)導体棒 ab には,a から bに向かう向きの誘導起電力 V=uBl[V] が発生する。 キルヒホッフの第2法則より、 p.302式(3) p.261式 (12) vBl=RI よって,v= RI RMg [m/s] Bl B²12 (3)力の仕事率 P〔W〕 は, 力と速さの積で表される。 すなわち, M'g'R P=MgXv= (W) B²12 類題2 図のように、例題② の装置に, 内 部抵抗の無視できる起電力E [V] の電池とス イッチSを付け加えて, おもりを手で支えて おく。 スイッチSを閉じて静かに手をはなす と、おもりは上昇し始め、 しばらくするとお もりと導体棒は一定の速さになった。 R ET (1)回路を流れる電流の強さ [A] を B, l,M,g を用いて表せ。 (2)一定の速さ [m/s] を B, l, E, R, M, g を用いて表せ。 B a M

回答募集中 回答数: 0
物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0
物理 高校生

高校物理 75番の(3)と79番鉛筆で波線引っ張った部分の解説がわかりません。教えて欲しいです。

54 第1章 物体の運動とエネルギー 75 仕事率 重力加速度の大きさを 9.8m/sとして、次の仕事をそれぞれ求める (1) クレーン車が質量 2.0×102kgの物体を,一定の速さで35秒間に10m持ち上げ たときの仕事率 2) 自動車が1.5×10°Nの推進力で,一定の速さ 18m/s で走行したときの仕事率 773) 50kgの人が,1.0 分間に高さ12mの階段を一定の速度で上がったときの仕事 ヒント (3)この人は自分にはたらく重力に逆らって12m移動する。宝一高 ➡1 9102 運動エネルギーと仕事 図のように,斜面上に質量 76 3.0kg の台車を置き, 速さ2.0m/sですべらせたところ, ある時間が経過した後に, 台車の速さが6.0m/sになった。 この間に,台車にはたらく合力がした仕事はいくらか。 ➡2 77 ヒント 台車の運動エネルギーの変化) = (台車がされた仕事 ) 9/10 2.0m/s さ6.0m/s 18 ●運動エネルギーと仕事 質量 2.0×10-2kgの小球が, 厚さ 3.0kg # ST 2\m0.0.10m 0.10mの鉛直に固定された木材に,速さ 3.0×102m/s で水平に打ち こまれ、木材を貫通した直後に 1.0×10m/sの速さになった。 木材 の中を進む間, 小球は木材から一定の大きさの抵抗力を, 運動の向き と逆向きに受けるとする。 また, 重力の影響は無視できるものとする。 (1) 小球が木材を貫通するまでに、木材の抵抗力が小球にした仕事はいくらか。 T(2) 木材の抵抗力の大きさはいくらか。 OS ヒント (1) (小球の運動エネルギーの変化)=(小球がされた仕事 ) 223 ・木材 ➡2 NET 78重力による位置エネルギー 崖から10m上の塔の屋上には 質量 2.0kgの物体Aがあり, 崖から15m下の水面には質量面 4.0kgの物体Bが浮かんでいる。 重力加速度の大きさを 9.8m/s20 とする。 AQ 塔 10m 崖 (1) 水面を基準にとるとき, A,Bの重力による位置エネルギーは それぞれいくらか。 15m B (2) 崖を基準にとるとき, A, B の重力による位置エネルギーはそ れぞれいくらか。 -2 水面 79弾性力による位置エネルギー 図のように, 一端を壁 ヒント 重力による位置エネルギーは,基準のとりかたによって正にも負にもなる。 駐車 車 に固定したばね定数 3.0 × 102N/m の軽いばねの他端に物体 をつけて,この物体を水平方向に手で引く。 00000000 (1) ばねを自然の長さから10cm伸ばすとき, 物体がもつ弾性力による位置エネル ギーはいくらになるか。 また,このときに手が加えた力がした仕事はいくらか。 2)このばねをさらに10cm伸ばすとき、物体がもつ弾性力による位置エネルギーは いくらになるか。 また、このときに手が加えた力がした仕事はいくらか。 ➡2 ヒント 弾性力による位置エネルギーは, 弾性力に逆らって加えた力のした仕事に等しい。

回答募集中 回答数: 0
物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
1/13