学年

教科

質問の種類

数学 高校生

ベクトルの問題です。 模範解答と違う解き方なのですが、これでも良いのでしょうか?不足があれば解説していただけるとありがたいです。

重要 例題 33 内積と三角形の形状 △ABC が次の等式を満たすとき, △ABCはどのような形か。 (1) AB AC JAC 00000 (2) AB・BC=BC・CA=CA・AB 基本30 三角形の形状問題 2辺ずつの長さの関係 (2辺の長さが等しい, 3辺の長さが等しい など), 2辺のなす角 (30° 45° 60 90°になるかなど) を調べる。 線分の長さ、角の大きさを調べるには, 内積を利用する。 (1) JACP-AC-AC (AB-AC)-AC=0 (内積)=0垂直 (2) 2組ずつ, すなわち AB・BC=BC・CA, BC・CA=CA・ABについて調べる。 1つ 目の等式でBC-(AB-CA)=0 ここで, BC を AC-ABに分割する。 CHART 線分のなす角、長さの平方 内積を利用 (1) AB AC=ACから 解答 ゆえに AB・AC-AC・AC=0 (AB-AC) AC =0引ける AC-AC-AC 637 台 (1) AB-AC=CB であるから CB・AC=0 CB = 0, AC ±0 であるから CBLAC すなわち CBLAC したがって, △ABCは ∠C=90°の直角三角形である。どの角が直角になるかも (2) AB・BC=BC・CA から 明記しておく。 BC (AB-CA)=0 よって (AC-AB)・(AB+AC) = 0 BC=AC-AB. ゆえに JACP-AB=0 TA=-AC よって JAC=AB| すなわち AC=AB... ・① BC・CA=CAAB から, 上と同様にして BC=AB ・・・・・・ ② AB=BC=CA ① ② から したがって, △ABCは正三角形である。 No. Date TAB /a50-1921 7050. AC したかって AB L(=90°0325785 A B. (2) <CA(BC-AB)=0 (BA-BC)-(BC+BA) =0 |BA=IBCP よって BA=BC FB = CA 1 章 4 位置ベクトル、ベクトルと図形 AB=CA 同様に、BC=AB.CA=BC よって 正三角形

解決済み 回答数: 1
数学 高校生

証明問題でマーカー部分の角度の導き方が解答と自分で書いたのでは方法が違うのですが、私が書いた方法でも正解になりますか? ならない場合どこが違うのかも教えてください。

104 第3章 図形の性質 基礎問 60 四角形への応用 AB=AC をみたすAABCがあって、 その外接円上に点Pをとる。 次に, PC のCの側への延長上に BP3CQ となる Qをとる。ただし、PはAを含まない円 弧BC上にある。AP=BP+CP が成り たつとき、次の問いに答えよ。 (1) AABP=AACQ を示せ. (2) AAPQは正三角形であることを示せ。 (3) AABC は正三角形であることを示せ。 B P (1) AABP と△ACQにおいて、 等しいところをチエックして、次 に、どこが等しくなれば三角形の合同条件が使えるかを考えます。 このとき、円に内接する四角形が存在しているので、 5の に 精講 ある性質を利用します。 (2), (3) 正三角形であることを示す方法 03辺の長さが等しい ③ 二等辺三角形+α の 重心、内心, 外心. 垂心のどれか2つが一致する この4つくらいを知っておけば十分です。 あとは,設問でわかっている条件をもとにして, どれを使うか決めていき ます。 2 3つの内角が等しい 解答 (1) AABP と△ACQ において、 条件より, AB=AC, BP=CQ 次に、四角形 ABPC は円に内接するので ZABP+ZACP=180° よって,ZACQ=D180°-ZACP =ZABP ABCP 円が内接しているので i+ Af- in0% Lhctr LACB:18 A 06 ,年げ A.Ac 上り 20でそのMの角が等しいのを A AFP= △Aca

回答募集中 回答数: 0
1/2