学年

教科

質問の種類

生物 高校生

[ 生物基礎 ] (5)についてです。 実際の長さを求める際は、目盛り×ひと目盛りの値に倍率を割る必要があると聞いたのですが、今回の問題は割っていません。 対物レンズの情報しかないからでしょうか? 倍率を考慮しなくていい場合があるのでしょうか?

第1章 生物の特徴 基本例題 3 ミクロメーターの使用法 基本問題 9 30 40 50 60 70 右図は,対物ミクロメーターを用い て、接眼ミクロメーター 1目盛りの長 さを測定しているときのようすである。 (1) 図のAとBの目盛りのうち,どち らが対物ミクロメーターの目盛りか。 (2) 対物ミクロメーターの目盛りは, 1mmを100等分したものである。 1目盛りの長さは何μm か。 A B (3) 図のように2つのミクロメーターの目盛りが,平行になるように調節した。 この 倍率における接眼ミクロメーター1目盛りの長さは何μm か。 (4)(3)の観察像が40倍の対物レンズを使用したときのものだとすると, 10倍の対物レ ンズに切り替えたとき, 接眼ミクロメーター1目盛りの長さは何μm になるか。 (5)(3)の倍率で,接眼ミクロメーター15目盛りに相当する細胞の長さは何μm か。 考え方 (1)目盛りに数字が書いてある方が接眼ミクロメーターである。 (2) 1 mmは1000μmである。 (3) 対物ミクロメーター5目盛りが接眼ミクロメーター20 目盛りと一致しているので, (5×10)÷20=2.5(μm)となる。 (4)倍率が1/4になると, 視野中の長さは4倍となる。 なお, 実際に観察をする際は、ふつう,レンズの倍率 は低いものから先に使用する。 (5) 接眼ミクロメーター1目盛りが2.5μm を表すの で, 2.5×15=37.5 (μm) となる。 解答 (1) (2)10μm (3)2.5μm (4)10μm (5)37.5μm

回答募集中 回答数: 0
地学 高校生

地学基礎です!この問題の答え合わせがしたいのでここの答えを知っている方は教えてください‼︎

8 休 6 第1編 活動する地球 3.地球の形 次の文の空欄に適切な語句や式を記入せよ。 (1 地球の形は大まかに見ると(ア 方向につぶれ(" ふく と考えてよいが、より詳しく見ると 方向に膨らんだ( の形を )で, で表される。 地球がこ している。 だ円がどのくらい膨らんでいるかを表すものが ( 赤道半径を a,極半径をbとすると ( このような形をしていることは、極地方の緯度1°当たりの経線の長さが赤道 地方のそれよりも(* いことによって証明された。 4.地球の形 次の文中の空欄に適切な語句を記入せよ。 地球は自転していることから, 地球の表面 北極 には(ア )がはたらく。 このことから ニュートンは,地球の形は完全な球ではなく 1°⌒ (" 方向に膨らんだ(^ ) であると予想した。 天道 1° この考えが正しいことは, 18世紀にフラ ンス学士院の測量の結果証明された。この測 量は,赤道地方の緯度1° 当たりの経線の長 さと,中緯度地方 極地方のそれを測量したもので,その長さは,赤道地方 のほうが極地方よりも( いことがわかった。 もし, 地球が完全な球 い ならば、緯度1°当たりの経線の長さはどこでも ヒント 各地の緯度は,その地点での鉛直線と赤道面がなす角度である。 5 地球の表面の起伏次の図は,地形を1000mごとに区分したものであ る。これを参考にして,全地球表面の高度深度と面積の関係について述べ (1)~(3)の文の空欄(ア)~(ウ)に適切な語句を記入し, (4) に答えよ。 (m) 5000~ 4000~5000 陸 3000~4000 度 2000~3000 1000~2000 0~1000 0~1000 1000~2000 2000~3000 深 3000~4000 海 4000~5000 5000~6000 6000~7000 7000~ 0 5 10 15 20 25 地球の表面積に占める割合(%) (1) 高度2000mより低い陸の部分の面積は,深度 2000mより浅い海の部分 の面積より ( い。 (2) 高度1000m より高い陸の部分の面積は, 高度1000mより低い陸の部分 の面積より(^ い。 (3) 深度3000mから5000mまでの海の部分の面積は, 深度5000m より深い 海の部分の面積より(2 い。 (4) 地球全体の1000m 区分ごとの面積の中で最も大きいのは,どの区分か。

回答募集中 回答数: 0
物理 高校生

速度の合成の(4)で、CDを求める所からイマイチ理解出来ないので、誰か噛み砕いて教えて欲しいです

1. 速度の合成 図のように、一定の速さで一様に流れる川に浮かぶ船の運動を考える。 船は、静止している水においては一定の速さ vs (vsv) で進み, また、瞬時に 向きを自由に変えられる。 最初, 船は船着場Aにいる。 Aから流れに平行に 下流に向かって距離L離れた地点をB, A から流れに垂直に距離W 離れた地 点をC, Cから流れに平行に下流に離れた地点をDとする。 船の大きさは無 視できるものとする。 C D 川 WW ひろ 三 A M B L (1)地点AとBを直線的に往復する時間 TB を L, vs, v を用いて表せ。 →正 (2) 船首の向きを, AC を結ぶ直線に対してある一定の角度をなすように上流向きに向け, 流れに垂直に 船が進むようにして,地点AとC を直線的に往復する時間 Tc を W, vs, v を用いて表せ。 (3)L=Wのとき, Tc を TB, vs, v を用いて表せ。 また, 時間 Tc と TBのうち長いほうを答えよ。 (4)船首の向きを, AC を結ぶ直線に対し角度8 (80)だけ上流向きに向けて地点Aから船を進めると 地点Dに直線的に到着する。 その後、地点DからCに、流れに平行に進み, 地点Cに到着する。 地 点AからDを経由し Cまで移動するのに要する時間を W, vs, v, 0を用いて表せ。 分解する [21 東京都立大] (4) Ms. M UsW RUSCOSE MS COS Mssing M Ľ 流されてしまう W=uscostAp AからDの時間 W Ł. CAD=COSO CD = (u-ussingtap mussingi Mscost CD=us-utpe と流されたしかり toc= MSCD の時間 M5-1 u-ussing TtAp+toc こ (1-sin) W (Ms-m) Coso W

回答募集中 回答数: 0
地学 高校生

地学基礎の質問です! (1)の解き方を分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

7. 地球の形と大きさ 次の文章を読み, 下の各問いに答えよ。 古代ギリシャでは地球が丸い(球形である)ことが知られており, 実際にその大きさを測 定するものまで現れた。 はじめて地球の大きさを見積もったのは, 紀元前3世紀頃に活躍 したエラトステネスである。 彼は,現在のエジプト南部にあった都市シエネで夏至にちょ うど太陽が真上に来ること,シエネのほぼ真北にあるアレクサンドリアにおいて夏至の太 陽の南中時の高度が約82.8度であること, 両都市の間は約5000 スタジア (約925km) であ ることから, 地球の大きさを概算することに成功した。 (1) 地球を球とみなすと, シエネおよびアレクサンドリアの緯度はそれぞれ何度か。 なお, この時代の自転軸の傾きは23.7度とする。 1 7.2 南北 ② 23.7日 ③ 30.9 地 ④ 59.1 ⑤ 82.8 J (1) (2) 地球を球とみなすと, エラトステネスの計算では,地球の外周は約何kmになるか。 (1 38000 km ② 40000km の各③ 42000km ④ 44000km (5 46000 km (3) 実際の地球は、 自転軸方向につぶれた回転楕円体に近い形をしている。 地球を下の図 の大きさに縮小した場合, 地球の形に近いものを1つ選べ。 ① ② ③ (S)

回答募集中 回答数: 0