学年

教科

質問の種類

数学 高校生

この問題教えていただきたいです❗️

第3問 (選択問題) (配点20) 数列に関する問題を読んで,あとの問いに答えよ。 問題 等差数列{an}, {bn}がある。 数列{an} は初項144, 公差 -5 であり、数 列{bm} は第2項が 83, 第4項が 69 である。 このとき、次のように数列{an}の偶数番目の項の後ろに数列{bm} の項 をb, から順に1項ずつ配置した数列{cm} を考える。 {cm} a1,a2, bi, as, a, bz, as, as, bs, 数列{cm}の初項から第n項までの和を Um とする。 U が最大となるよ うな自然数nの値を求めよ。 (1) 数列{an}, {bm}の一般項は,それぞれ an= アイn+ ウエオ である。 bn= カキ n+ クケ (2) 数列{an}の初項から第n項までの和 Sm が最大となるときの自然数nの値を求 めよう。 an> 0 となるnの値の範囲は n ≧ コサ , an <0 となるnの値の範 囲は n ≧ シス であるから, S, が最大となるときのnの値は セソであ り,このときのS" の値は タチツテとなる。 数学ⅡI・数学B (3) 数列{bn}の初項から第n項までの和を Tm とする。 (2) と同様に考えて, Tm が 最大となるときの自然数nの値は トナ である。 (4) 数列 {cm} は,数列{an},{bn} との関係から C3n-1= ヌ C3n = an 二 である。 ずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 (0) (11) a 2n (2) (4 bn (5 b₂n (6) b3n ネ C3n-2= (5) Um が最大となるときの自然数nの値は に当てはまるものを,次の ⑩〜⑦のうちから一つ ネ an ノハ (n=1, 2, 3,...). である。 (3 a 2n-1 7b2n-1

回答募集中 回答数: 0
数学 高校生

解説お願いします❗️

第3問 (選択問題) (配点20) 数列に関する問題を読んで,あとの問いに答えよ。 問題 等差数列{an}, {bn}がある。 数列{an} は初項144, 公差 -5 であり、数 列{bm} は第2項が 83, 第4項が 69 である。 このとき、次のように数列{an}の偶数番目の項の後ろに数列{bm} の項 をb, から順に1項ずつ配置した数列{cm} を考える。 {cm} a1,a2, bi, as, a, bz, as, as, bs, 数列{cm}の初項から第n項までの和を Um とする。 U が最大となるよ うな自然数nの値を求めよ。 (1) 数列{an}, {bm}の一般項は,それぞれ an= アイn+ ウエオ である。 bn= カキ n+ クケ (2) 数列{an}の初項から第n項までの和 Sm が最大となるときの自然数nの値を求 めよう。 an> 0 となるnの値の範囲は n ≧ コサ , an <0 となるnの値の範 囲は n ≧ シス であるから, S, が最大となるときのnの値は セソであ り,このときのS" の値は タチツテとなる。 数学ⅡI・数学B (3) 数列{bn}の初項から第n項までの和を Tm とする。 (2) と同様に考えて, Tm が 最大となるときの自然数nの値は トナ である。 (4) 数列 {cm} は,数列{an},{bn} との関係から C3n-1= ヌ C3n = an 二 である。 ずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 (0) (11) a 2n (2) (4 bn (5 b₂n (6) b3n ネ C3n-2= (5) Um が最大となるときの自然数nの値は に当てはまるものを,次の ⑩〜⑦のうちから一つ ネ an ノハ (n=1, 2, 3,...). である。 (3 a 2n-1 7b2n-1

回答募集中 回答数: 0
数学 高校生

この問題の解説お願いします!!よろしくお願いします!

第3問 (選択問題) (配点20) 数列に関する問題を読んで,あとの問いに答えよ。 問題 等差数列{an}, {bn}がある。 数列{an} は初項144, 公差 -5 であり、数 列{bm} は第2項が 83, 第4項が 69 である。 このとき、次のように数列{an}の偶数番目の項の後ろに数列{bm} の項 をb, から順に1項ずつ配置した数列{cm} を考える。 {cm} a1,a2, bi, as, a, bz, as, as, bs, 数列{cm}の初項から第n項までの和を Um とする。 U が最大となるよ うな自然数nの値を求めよ。 (1) 数列{an}, {bm}の一般項は,それぞれ an= アイn+ ウエオ である。 bn= カキ n+ クケ (2) 数列{an}の初項から第n項までの和 Sm が最大となるときの自然数nの値を求 めよう。 an> 0 となるnの値の範囲は n ≧ コサ , an <0 となるnの値の範 囲は n ≧ シス であるから, S, が最大となるときのnの値は セソであ り,このときのS" の値は タチツテとなる。 数学ⅡI・数学B (3) 数列{bn}の初項から第n項までの和を Tm とする。 (2) と同様に考えて, Tm が 最大となるときの自然数nの値は トナ である。 (4) 数列 {cm} は,数列{an},{bn} との関係から C3n-1= ヌ C3n = an 二 である。 ずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 (0) (11) a 2n (2) (4 bn (5 b₂n (6) b3n ネ C3n-2= (5) Um が最大となるときの自然数nの値は に当てはまるものを,次の ⑩〜⑦のうちから一つ ネ an ノハ (n=1, 2, 3,...). である。 (3 a 2n-1 7b2n-1

回答募集中 回答数: 0
数学 高校生

(2)の(ii)でなぜα<=p<βになるのかが分かりません!解説お願いします🙇🏻‍♀️

数学Ⅱ・数学B (第1問 第2問 (必答問題)/ 第3問~第5問 (選択問題)) [学・学] 2001 HRRI) 第1問 (必答問題)(配点 30) 〔1〕 関数 f(x)=acos (bx+cm) について, y=f(x)のグラフをコンピュータのグラ cに値を入力すると、 フ表示ソフトを用いて表示させる。 このソフトでは,α, b, その値に応じたグラフが表示される。 このとき、 下の問いに答えよ。 ただし,α に入力できる値は正の実数とする。 (1) 次の図1は,a=1,b=2, c=3 を入力したときに表示されたグラフを表して いる。 y ol BOCOOL THE 381 TC MA A it 000000 図 0 0 0 0 0 6 (300 ME IN (数学ⅡⅠ・数学B 第1問は次ページに続く。) 次の(1), (II), (Ⅲ)は,図 1 を表示させた後に, a,b,cの値のうちいずれか1つ の値だけを変えたときに表示されたグラフである。 変えた値の組み合わせとして 正しいものを次の⑩~⑤のうちから一つ選べ。 ア ただ,図 1, (I), (II), (II)のグラフのx軸、y軸に平行な直線は、それぞれ同じ 幅で、等間隔に並んでいるものとする。 (I) (III) W na YA AA (II) YA WAA # (I)はα, (II)は, (ⅢI)はcの値だけを変えた。 ① (I)はα, (II)はc, (ⅢI)は6の値だけを変えた。 (I)は,(II)はα, (ⅢI)はcの値だけを変えた。 ③ (I)は6, (II)はc, (II)はαの値だけを変えた。 ④ (I)はc, (II)はα(ⅢI)は6の値だけを変えた。 ⑤ (I)はc, (II)は6, (ⅢI)はαの値だけを変えた。 (数学ⅡI・数学B 第1問は次ページに

回答募集中 回答数: 0
数学 高校生

(2)のiiが分かりません!pのとりうる範囲について解説お願いします🙇🏻‍♀️

数学Ⅱ・数学B (第1問 第2問 (必答問題)/ 第3問~第5問 (選択問題)) [学・学] 2001 HRRI) 第1問 (必答問題)(配点 30) 〔1〕 関数 f(x)=acos (bx+cm) について, y=f(x)のグラフをコンピュータのグラ cに値を入力すると、 フ表示ソフトを用いて表示させる。 このソフトでは,α, b, その値に応じたグラフが表示される。 このとき、 下の問いに答えよ。 ただし,α に入力できる値は正の実数とする。 (1) 次の図1は,a=1,b=2, c=3 を入力したときに表示されたグラフを表して いる。 y ol BOCOOL THE 381 TC MA A it 000000 図 0 0 0 0 0 6 (300 ME IN (数学ⅡⅠ・数学B 第1問は次ページに続く。) 次の(1), (II), (Ⅲ)は,図 1 を表示させた後に, a,b,cの値のうちいずれか1つ の値だけを変えたときに表示されたグラフである。 変えた値の組み合わせとして 正しいものを次の⑩~⑤のうちから一つ選べ。 ア ただ,図 1, (I), (II), (II)のグラフのx軸、y軸に平行な直線は、それぞれ同じ 幅で、等間隔に並んでいるものとする。 (I) (III) W na YA AA (II) YA WAA # (I)はα, (II)は, (ⅢI)はcの値だけを変えた。 ① (I)はα, (II)はc, (ⅢI)は6の値だけを変えた。 (I)は,(II)はα, (ⅢI)はcの値だけを変えた。 ③ (I)は6, (II)はc, (II)はαの値だけを変えた。 ④ (I)はc, (II)はα(ⅢI)は6の値だけを変えた。 ⑤ (I)はc, (II)は6, (ⅢI)はαの値だけを変えた。 (数学ⅡI・数学B 第1問は次ページに

回答募集中 回答数: 0