学年

教科

質問の種類

数学 高校生

207.1 記述はこれでも大丈夫ですか??

基本 例題 2073次関数が極値をもつ条件,もたない条件 関数f(x)=x^3+ax²が極値をもつとき,定数aの満たすべき条件を求めよ。 (2) 関数f(x)=x^-6x+6ax が極大値と極小値をもつような定数aの値の範囲 を求めよ。 あるから、 18. 十分条件 め (3) 関数f(x)=x3+ax2+x+1が極値をもたないための必要十分条件を求めよ。 ただし, aは定数とする。 基本 201206 重要 210 SIST 指針 3次関数f(x) が 極値をもつ ⇔f'(x) の符号が変わる点がある ⇔f'(x)=0が異なる2つの実数解をもつ ⇔f'(x)=0の判別式 D>0 符号の変化 している。 解答 (1) f'(x)=3x2+2ax f(x) が極値をもつための条件は、 f'(x) = 0 が異なる2つの実 数解をもつことである。 3x2+2ax=0 の判別式をDとする D=a²-3·0=a² と ゆえに, d²>0 から このD>OTE ここで本 a=0 (2) f'(x)=3x²-12x+6a=3(x²-4x+2a)(+*o)n+(²8+ f(x) が極大値と極小値をもつための条件は,f'(x)=0 が異 なる2つの実数解をもつことである。 よって, x2-4x+2a=0 の判別式をDとすると D=(-2)^-1・2a=4-2aから, 4-2a>0より 極大 x=α 4 練習 3207 (3) f'(x)=3x2+2ax+1 f(x) が極値をもたないための必要十分条件は,f'(x) の符号 が変わらないことである。 ゆえに,f'(x)=0 すなわち 3x²+2ax+1=0 ① は実数解を1つだけもつかまたは 4(√4-a) 実数解をもたない。から よって、①の判別式をDとすると ここで D=q²-3.1=(a+√3)(a-√3) ゆえに (a+√3)(a-√3)=0 D≤0...... D>0 a <2 の係数) >0のとき y=f(x) | x=B₁ 極小 3次関数が極値をもつとき, 極大値と極小値を1つずつ もつ。 x(3x+2a)=0 から y=f'(x) / 心 Bx CONS 2 x=0, (3) よって a≠0 としてもよい。 D=0 . (*) XD<0 a y=f'(x) y=f'(x) / x x よって一≦a≦√(*)D<0は誤り。 (1) 関数f(x)=4.x3-3(2a+1)x² +6ax が極大値と極小値をもつとき,定数aが 満たすべき条件を求めよ。 [類 工学院大 ] (2) 関数f(x)=x3+ax²+(3a-6)x+5が極値をもつような定数aの値の範囲を [類 名古屋大 ] 323 +1 が常に単調に増加するような定数aの値の範 必学類 千葉工大] 6章 36 関数の増減と極大・極小

未解決 回答数: 1
数学 高校生

高校数学微分の問題です。 線を引いてあるところが、どういうことか分かりません。x=0のときの傾きからなんでcが分かるの?って感じなんです、、、 解説お願いします🙇‍♀️🙇‍♀️(~_~;)

数学Ⅱ 第6章 微分法と積分法 第2節問題 [710高等学校 数学Ⅱ 問題13] 3次関数y=ax+bx2 + cx + d のグラフが右の図のように なるとき, a,b,c, d の値の符号をそれぞれ求めよ。 ただ し、図中の黒丸は極値をとる点を表している。 (解説) f(x)=ax+bx2 + cx + d とする。 このとき f'(x)=3ax2+2bx+c=3ax+ グラフとy軸の交点のy座標が正であるから すなわち ƒ(0)>0 d>0 また,グラフよりy=f(x)のx=0 における接線の傾きは正であるから f'(0) >0 すなわち c>0 さらに,グラフよりf(x) は極値を2つもち, 極値をとるxの値の符号はどちらも正であ る。 よって, 方程式 f'(x) = 0 を満たす実数xは2つあり,それらを α, β(0<α <β) とする と, グラフより f(x) の増減表は次のようになる。 x a f'(x) + 0 f(x) B 20 + 6 \2 62 +c 3a 3a 増減表とα>0,β>0より, y=f'(x) のグラフは右の図 のような, 下に凸の放物線となるから a>0 y ん x 放物線y=f'(x) の軸は直線x=- で,y軸の右側に b 3a y y=f'(x) 12 0 α B あるから b 3a ->0 ここでa>0であるから b<0 以上より, それぞれの符号は α:正, 6: 負,c:正, d: 正 x

未解決 回答数: 0
数学 高校生

68. 表を書けばいいと思いつけばあとは簡単だと思うものの、表を書くことを閃く自信がないのですが高次不等式の問題は表を書いて解くのが一番いい方法ですか?

108 重要 例題 68 高次不等式の解法 次の不等式を解け。 ただし, α は正の定数とする。 x-(a+1)x2+(a−2)x+2a≦0 指針▷まず,不等式の左辺を因数分解する。 因数定理を利用してもよいが,この問題では、 次の文字αについて整理する方が早い。 (x-ar)(x-B)(x-x)≧0の形に変形したら、後は各因数x-α, x-px-yの符号を割 て, (x-a)(x-β) (x-y) の符号を判定する。 なお,α,ß, yに文字が含まれるときは,α, B, yの大小関係に注意する。・・・・・・ 解答 不等式の左辺をα について整理すると (x²-x²-2x)-(x²-x-2) a ≤0 x(x+1)(x-2)-(x+1)(x-2)a≦0 (x+1)(x-2)(x-a) ≤0 0<a<2のときx-lax2+ a=2のとき x≦-1, x=2 2 <a のとき x≤-1, 2≤x≤a よって [1] 0<a<2 右の表から, 解は x≦-1, a≦x≦2 [2] a=2のとき x-a 不等式は (x+1)(x-2)=0となり,x-2 (x-2)^2≧0であるから f(x) x-2=0 または x+1≧0 (20)+(1-8) (D-1)+(ーー) α<β<yのとき (x-a)(x-β)(x-x)≧0の解は (x-a)(x-β) (x-x) ≧0の解は x x+1 a≤x≤ß, r≤x xha, Baxy [1] f(x)=(x+1)(x-2)(x-a) x (01 検討 3 次不等式を3次関数のグラフで考える 3次関数y=f(x)のグラフについては,第6章の微分法のところで 詳しく学習するが、グラフの概形は右の図のようになる。 このグラフから 4x²-x²-2x x-2 x-a f(x) =x(x-x-2) =x(x+1)(x-2) ゆえに, 解は x≤-1, x=2(x+1+0+(1+6)S-A+brys [3] 2<αのとき 右の表から,解は x-1,2≦x≦a [1]~[3] から 求める解は - 0 0 0 00000 ... a ... 2 …. + + + + + 0 + ++ [3] f(x)=(x+1)(x-2)(x-a) ... -1... 20 - 0 + 0 - + H + 28. 11.03 - 0 + 0 + 22 +0|0 + + FIT - B 1 a + + 0+ 0 + 2

回答募集中 回答数: 0