学年

教科

質問の種類

数学 高校生

例121 (3)何故このように場合分けするのですか? 幅?についても何か教えていただきたいです

★★☆☆ 例題 121 ガウス記号を含む方程式 特講 S 次の方程式を解け。 ただし, [x]はx を超えない最大の整数を表す。 (1)[2x] = 3 (2)[3x-1] = 2x (3) [2x]-[x] = 3 (1) Action ガウス記号は, n≦x<n+1 のとき [x] = n として外せ 例題120 (1),(2)はガウス記号が1つ[x]=n のとき n≦x < n+1 として外す 場合に分ける 48217-2 (3)はガウス記号が2つ 幅1ごとに値が変わる 一般にこの部分で考えてみる ←[] 1 2 01 32 x 2 n [2x] => n+1/2n+1 3 ごとに値が変わる (ア)(イ) 思考プロセス 章 9 2次関数と2次不等式 = 3 ≦x<2 2 2x 2, 3 *>* 方程式の解は,不等式で 表される範囲になる。 ■ [3x-1] は整数である から, 2xも整数になる。 2x≦3x-1 より x≧1 3x-1 < 2x+1 より x<2 (1) [2x] = 3より, 3≦2x < 4 であるから ... (2)[3x-1] = 2x ① より, 2x は整数である。 ①より 2x≦3x-1 <2x+1 これを解くと 1≦x<2 。 4 2≦2x < 4 であり、 2x は整数より 3 よって x=1, 2 (3) [2x]-[x]=3・・・② とする。 1 (ア) n≦x<n+ (nは整数)のとき 2 2n≦2x<2n+1 であるから [2x] = 2n xを幅 1/2 で場合分けす る。 また,[x] = nであるから,②は2n-n=3x よって n=3 ゆえに 3≤ x < x</ (イ)n (イ) n+ n+ 2 2 ≦x< n +1(n は整数)のとき 2n+1≦2x<2n+2 であるから [2x] = 2n+1 また, [x] = nであるから,②は (2n+1)-n=3 よって n=2 5 ゆえに ≦x<3 2 5 (ア)(イ)より 12/21/12 01 1+ (1) [3x] = 1 121 次の方程式を解け。 ただし, [x] は x を超えない最大の整数を表す。 (2) 2x=[√5] (3) [2x+1]=3x (4) [3x]-[x]=1 217

未解決 回答数: 0
数学 高校生

解説の波戦引いたところなんでそうなるんですか🙇‍♂️ 引き算やからbの2乗の値によるんじゃないんですか?

〔1〕 関数f(x)=ax2 + bx + c について,y=f(x)のグラフをコンピュータ トを用いて表示させる。ただし、このコンピュータソフトでは、 じゅうぶん は十分に広い範囲で変化させられるものとする。 a. b. 2024年度 数学Ⅰ/本試験 67 (2) 次の操作 A. 操作 B. 操作 Cのうち,いずれか一つの操作を行う。 の部分と1<x<0の部分のそれぞれと交わる, 上に凸の放物線が表示 a,b,c の値をそれぞれ定めたところ, 図1のように, x軸の2くく STAIN 18.0 れた。 $100.0 PORLA BA+ 2008 20 18620 2100.0 操作 A 図1の状態からb.cの値は変えず, aの値だけを減少させる。 操作B 図1の状態からacの値は変えず,bの値だけを減少させる。 操作C 図1の状態からa, bの値は変えず, c の値だけを減少させる。 このとき、 操作 A, 操作 B. 操作 Cのうち 5 「不等式f(x)の解が、すべての実数となること が起こり得る操作は キ また 方程式f(x)=0は異なる二つの正の解をもつこと が起こり得る操作は ク rece.0 腰につ -1 0 2 3 4x ク の解答群 (同じものを繰り返し選んでもよい。) 2020 43112 19:0 2800.0 O ない ① 操作 A だけである 020 0108.0 020 ② 操作 Bだけである 586.0 T0 818.0 ③ 操作 Cだけである ATLA 00000 0002 0 (1) 図1の放物線を表示させる a,b,cの値について 操作 A と操作 Bだけである 0212.0 0 9023.0 ア 0. b 0. C ウ 0. b2-4 ac 0. 4a-2b+cl オ 0. a-b+c 0 ⑤ 操作 A と操作 Cだけである ⑥ 操作 B と操作 Cだけである 操作 A と操作 Bと操作 Cのすべてである である。 900 08.0 ager.o 8182.0 8108.0 0385.0 00 rara.o ア カ の解答群(同じものを繰り返し選んでもよい。) 図 813.0 0 ① COUT 2 08.0 Trot.o

回答募集中 回答数: 0