学年

教科

質問の種類

数学 高校生

赤で囲っているところはなぜこうなるのですか?

00 本71 C) くる A=Q. 3+GC (00- 30G 針で = 0 基本 例題 31 線分の垂直に関する証明 00000 △ABCの重心を G, 外接円の中心を0とするとき, 次のことを示せ。 OA+OB+OC=OH である点Hをとると,Hは△ABCの垂心である。 (2)(1)の点に対して、3点O,G, Hは一直線上にあり GH=20G [類 山梨大 ] ・基本 25 基本 71 (1)三角形の垂心とは,三角形の各頂点から対辺またはその延長に下ろした垂線の交 点である。 AH 0, BC ≠0, BH = 0, CA ¥0 のとき AHBC, BHICA⇔AHBC=0, BH・CA=0 ...... A であるから, 内積を利用 して, A [(内積)=0] を計算により示す。 Oは△ABCの外心であるから, OA|=|OB|=|OC| も利用。 CHART 線分の垂直 (内積) = 0 を利用 (1) ∠A=90° ∠B=90° としてよ A 直角三角形のときは 解答 い。 このとき,外心Oは辺BC, G CA上にはない。 ① OH = OA+OB+OC から AH OH-OA=OB+OC ゆえに AH・BC =(OB+OC) (OC-OB =|OC|-|OB=0 B C 411 ∠C=90° とする。 このとき,外心は辺AB 上にある (辺AB の中 点)。 1 草 4 位置ベクトル、ベクトルと図形 同様にして60+40 =|OA|-|OC|=0 BC=OC-OB (分割) △ABCの外心0→ OA=OB=OC A0+00 50+1 (数学A) BH・CA=(OA+OC) (OA-OC) また, 1 から AH = OB+OC≠0, BH = OA+OC ¥0 よって, AH ≠0, BC≠0, BH ≠0, CA 0 であるから AH IBC, BHICA すなわち AH⊥BC, BHICA したがって,点Hは△ABCの垂心である。 検討 外心, 重心、心を通る直 線 (この例題の直線 180 OGH) をオイラー線と いう。ただし、正三角形 1 は除く。 (2) OG= OA+O+OC 10日から OH=3OG (1) から 3 3 OA+OB+OC=OH ゆえに GH = OH-OG=2OG よって, 3点0,G, Hは一直線上にあり GH=2OG 練習 右の図のように, △ABCの外側に P Q ③ 31 AP=AB, AQ=AC, ∠PAB= ∠QAC=90° となるように、2点P,Qをとる。 更に、四角形 AQRP が平行四辺形になるように点をと ると,ARIBC であることを証明せよ。 B09 C

回答募集中 回答数: 0
現代文 高校生

文章の意味が分かりません。 単語とか調べたものの、筆者の伝えたいこと、 各段落の内容が分からないので分かりやすい言葉で教えてほしいです。 問題の解説が掲載されていないため、漢字問題以外、解説お願いできませんか?🥺 シャーペンが私の、間違っていたとこのみピンクで正解を示して... 続きを読む

off ② ひとひととして向き合い、関係を構築すること自体が稀なことだから。 ⑧ 自立した主体の確立こそを理想とする社会の中で育ってきたから。 ④他者との関係性を損なわないためには、互いに適度な距離をとることが必要だから。 ⑥ 関係だけでなく、個人の能力も自分の本質を為すものとして無視できないから。 五日 (解答番号は、第二間で【古文】あるいは【現代文】 のいずれを選択した場合でも1~35 です。) 第一問 次の文章を読んで、設問 (問1~間10)に答えよ。 ひとりの人間と、彼/彼女が最初に出会うことば 〈言語〉との関係は、自明であり必然的であるというよりはるかに、ある種 偶然と事故によって支配されている。ひとりの人間がその誕生時において引きずる言語的ケイプそのものも、すでに複雑で した経路と水をかかえている。そうだとすれば、ことばの獲得とは、生得的な関係による る種の根源的な喪失とのなかから再発見 再獲得されるなにかであることになる。そのときことばは、私たちの生地ではな なものではなく、あ く、移住地であるのかもしれないのだ。 もしそのように考えることが許されるなら、ことばは私たちの存在を根源的に決定づけるなにものかであることをやめる。こ とばと私たちとの関係のなかに、 な属関係・新有関係を前提としない、旅と移住の運動性が生まれはじめる。こ とばはそれ自体として説明されるのではなく、それが言語的な未発の意識とのあいだに保存する記憶や痛みや欲動のほうから 定義され、そのことによってことばは言語的言語外的な認識によってつねに流動の渦のなかに置き直される。 私たちはみな、自分自身の前言語的な存在のかたちを、ことばという場に住みつかせるのだ。言語を とせずに存在する自分自身というものがあって、それをあらためてことばという異土に移り住まわせる。 そのとき、われわれが な手掛かり ことばを使うという行為は、本来的にすでに移住の行為、移民の行為だということになる。私たちはそのようにして日本語の世 さらにいえば、私たちはそのようにして、日本語話者としての「日本人」へと移民した。 ブラジルでは、ればふつう 「グラフィチ」と呼ばれる。 街路の壁々に描かれた、奔放な落書きのような風刺絵。 そもそもイ タリア語で柱や壁に傷をつけて書かれた「掻き文字」を意味する考古学用語が、日常の街路の壁の落書きをさすことはと 定の業界で仲間内だけで使われる僕。 された「グラフィティ」 (Graffiti)を、そのままブラジルのポルトガル語風に発音すれば「グラフィチ」。この国の街で、グラ フィチはあらゆる通りと路地とに満ちている。消されても消されても、人々は色とりどりのスプレーをふたたび持ってきては、 知らぬ間に家々の、シャッターを呟くばかりの想像力の氾濫によって色と線で埋め尽くしてしまう。 落書きが文字だけであれば、それはふつう「ビシャソン」である。 独特の字体に、特のようなことばの断片が踊り、かぶ 文字が歌やのかたちに変容してきだし、壁の平面に陰影の凹凸が生まれ、ことばに色と風合いとかたちが備わりはじ める。俗っぽいことばや政治的なスローガンを書き連ねる(「ビシャール」=壁に落書きを描く)だけのピシャソンにまじって、 時々はっとするほど時的な数行が、うす汚れた壁面に陥っていることもある。 ブラジルのグラフィチやビシャソンの世界の豊能さを、ブラジルを訪ねるはるか以前に私がはじめて知ったのは、デニス・ テッドロックの詩集『夢の暦の日々』のなかの記述からだった。 ニューメキシコのズニ族や、グアテマラのキチェ族の口承文化 や神話の研究で知られる北米の人類学者・民俗学者テッドロックは、ブラジルのカンピーナス市に滞在して特異な詩集のコウソ ウを練っていたとき、町の落書きのひとつに印象的な詩句を発見する。彼はそのポルトガル語の詩句を、こう写し取ってい VAI-SE A PRIMAVERA QUEIXAS DE PASSAROS, LAGRIMAS NOS OLHOS DOS PEIXES テッドロックが住んでいた家からわずかに二ブロックほど離れた路地に書かれていた、このビシャソンの飛び跳ねる奔放 筆跡を想像しながら、私はすぐに(テッドロックもおそらく気づいていない) この詩句の出自を理解した。 24一般入試A問題 (2024 AG-B-1) 介護は介護する介護されるという立場が明確であり、その主体は介護される者であるため、介護される者が介護とい 関係を受け容れることを待つことしかできない。 介護する者と介護される者の間にひととひととの個別的関係が築かれるためには、それぞれが主体と客体としての役割 をバランスよく果たしつつ、対話の機会を十分に持つ必要がある。 春がゆく鳥の嘆き 涙が魚の目に (行く春や鳥啼き魚の目は mmm はしょう 「奥の細道」の矢立初めの句としてよく知られたこの芭蕉の詩句が、ブラジルの地方都市の路地の壁に優美に踊っているの 想像して、私は不思議な興奮にとらえられた。芭蕉の句が、地球の対地点にまでたどりつく三百年をこえる時の道程のなか で経験した無数の声と文字による橋の過程に携帯用の筆入れと墨壺である立」からとりだされた筆記用具によって 聖の手帖の表面に走った毛筆の軌跡が、時を超えて、南米の植民都市の街路の壁の、スプレーによる躍動する落書きへと転 写されるという、筆跡の機知に満ちたはるかなる旅程に。 このビシャソンとなった芭蕉の句において、過ぎゆこうとする「春」はもはや日本的な春の惜別の感傷を宿してはいない。 ブ ラジルの春とは、いったい植物的な陰喩として測られるものなのか、それとも生き物や食べ物の推移として感知されるものなの か、それすらもはや判然とはしない。 ここで悲しく啼く熱帯の鳥とは? アマゾン川の獰猛な魚の目に溜まる泪とは? 日本語 の Haikaiへと転生するあいだに、ひとつの文化が感情の構造として宿していた意味と感覚の図の が、ポルトガル語の 一体が破れ、異形の、しかしみずみずしい力にあふれた別種のポエジーが、一気に侵入する。 自宅の近くの壁にお気に入りの落書きを見いだしたテッドロックは、たしかにこの時の古典日本的起源を知ることはな かったかもしれない。 しかし「夢の暦の日々」という詩集が示すように、彼はブラジルにおいて経験する日常的な出来事と、そ の反映としての夢のイメージとを、彼がよく知るマヤ=キチェ族の暦の形式に置き換えられた日録のなかに書き込んでいった。 「の」の日にはじまり 「一三の死」の日で一回転する精緻なマヤ暦のなかで自らの日常と幻想とを反することで、彼は近 代世界を統べる日常の時間から離脱し、先住民の生きてきた別種の暦との連続性の感覚のなかに入ってゆく。人類学という実践 そのものが異なる時間性の境界を越えてつかのま生きる実践であり、自らがフィールドにおいて生きたはずの別種の時の充足 ふたたび近代的な時間の支配するアカデミーのなかへと回収してしまう逆説的な行為であるからこそ、人類学はつねに幻影 既存の粋を解ょうヒスコ 夢のを「詩」として、フィールドノートと民族誌の余白に分泌するほかはない。 そして、テッドロックの想像力のなか に堆積した、そうしたヨジョウとしてのポエジーの氾濫が、ポルトガル語となった芭蕉の詩句による無意識のによってうな がされたものであることは、かえって芭蕉の転生としてのビシャソンの力を示している。ハイカイは、ここでたしかに、異土に 移住して別種の「時」と季節を渡りながら、ことばと文字がたどる一つの真実の旅の道程を見事に示している。 ブラジルにおいて、俳句をブラジル時のゼンエイ的な運動へと架橋し、芭蕉の評伝的なエッセイを書いた詩人がパウロ・レミ ンスキーである。姓からも察せられるように、彼の祖父母はポーランド系の開拓移民で、さらに彼の母親には黒人の血統も流れ こんでいた。ポーランド系ムラート〈黒い混血児〉のブラジル人。 この特別のケイフの混合に、レミンスキーは大いなる誇りと を感じていたという。(中略) クリチバという日系人も多く住むブラジル南部の街に生まれ育ち、 「日本」と早くから出逢い、若いときに日本語を習 得したレミンスキーが芭蕉と出会うのは、かならずしも驚くべき偶然とは言えなかったかもしれない、とわかる。そしてポーラ ンド系ムラートのブラジル人によって書かれた、ポルトガル語による唯一の「芭蕉伝」は、やはり「奥の細道」の冒頭における 俳聖の漂泊の心持ちを伝えることからはじまる。 あのビシャソンにもあった「奥の細道」の矢立初めの旬が、ここでも引用さ れているのだ。 レミンスキーによるこの句のポルトガル語ヴァージョンはつぎのとおりである。 primavera não nos deixe pássaros chorum lágrimas no olho do peixe 実験・野心弟で (2024AG-B-3) (2024AG-B-4)

回答募集中 回答数: 0
化学 高校生

二枚目の(iii)になるのが分かりません

H-C-OH 整理合 || 0 CH-OH H-C-H 酸化 「酸化 O C メタノール 甘酸 G ホルムアルデヒド 問8 思考力・判断力 化合物 A (分子式 C11 H1804) はエステルであり, A の加水分解 によって化合物 B (マレイン酸)とともに化合物CとDが得られる から, A はエステル結合を2個もつと考えられる。 これより D の分子式は, CiH1804 + 2 H2O + C4H4O4 - CH40 = C6H140 AJMERA B C D Bはジカルボン酸, Cはアルコールだから, Dはアルコールと 考えられる。これは, D がCと同様に Na と反応することにも矛 盾しない。 D に I と NaOH水溶液を加えて温めると黄色沈殿を生 成することから,Dはヨードホルム反応に陽性の化合物であるこ とがわかる。したがって、この時点で D (分子式 C6H140) の構造 として考えらえるのは,立体異性体を区別しなければ,以下の (i) 〜 (iv)の4種類である。(*印は不斉炭素原子を表す。) (i) CH3-CH-CH2-CH2-CH2-CH3 OH (茸) 酸 ギ酸は分子内にホルミル基と同じ構造を もつため、還元性を示す。 H+C+OH ホルミル基 カルボキシ基 (整理 エステル カルボン酸(RCOOH)とアルコール (R'OH) が脱水縮合するとエステル (RCOOR') が生成する。 R-C-OH + R'-OH 0 整理 ヨードホルム反応 R-C-O-R' + H2O H CH3-C-R または CH3-CH-R の構 OH 0 CH3 CH3-CH-CH2-CH-CH3 OH+O OH (iii) CH3-CH-CH-CH2-CH3 OH 11 CH3 0 造をもつ化合物にI と NaOH水溶液を加え て加熱すると,特有の臭いをもつヨードホ ルム CHI3 の黄色沈殿およびRC-ONa O HO-0 が生じる。 ただし, CH 3 -C-0の構 11 0 をもつ酢酸などはヨードホルム反応しない (iv) CH3 HO CH3-CH-C-CH3 OH CH 3 これらのうち, 濃硫酸を加えて加熱したとき, 分子内で脱水が起 こって得られる複数のアルケンに, シス−トランス異性体の関係に あるアルケン,および不斉炭素原子をもつアルケンがともに存在す るのは (i) のアルコールである。 整理 アルコールの脱水 D-OH 分子間脱水・・・エーテルが生成 2R-OH→R-O-R + H2O 分子内脱水・・・ アルケンが生成 年 -C-C-→-C=C-+H2 H OH

回答募集中 回答数: 0
数学 高校生

(2)を解き、答えもあっていましたが、私の答案の書き方で直した方がいいところを教えてください。

4 サイコロ型・ (1) 2個のさいころを同時に投げるとき, (i) 目の数の差が2である確率はいくらか. (ii) 目の数の積が12である確率はいくらか. (2)3個のさいころを同時に投げるとき,あるさいころの目の数が残りの2つのさいころの目の 数の和に等しい確率はいくらか. ( 椙山女学園大) 1 2 3 4 5 6 O O O さいころは区別する 目はさいころ1つにつき6個あるから, 2個投げ た場合,目の出方は36(=62) 通りあってこれらは同様に確からしいさい ころ2個であれば右のような表を書いて条件を満たすところに印をつける (図は目の数の和が6の場合で確率は5/36) という解法も実戦的と言える. さて,右表で「1と2の目が出る」 は2か所にあるが,これは 「区別できる さいころに1と2の目を割り当てるとき, 割り当て方は2通りある」 という 5 O ことである. ゾロ目は割り当て方が1通りなので表でも1か所ずつである. 6 12345 10 まず目の組合せを調べる さいころが3個以上のときは,表を書いて解くのは大変である. 上で述 べたように,まず目の組合せを調べ, 次にどの目をどのさいころに割り当てるかを考える. ③ (a,b,c)の関係性の国立 (サイコロ) 解答 ①サイコロ ②出に目一列に並べる→口 サイプわりわてるふり (1) 2個のさいころを区別し, A, B とすると, 目の出方は62=36通りあり, 表を使って解いてもよい。 これらは同様に確からしい. (i) 目の組合せは {3, 1}, {4, 2}, {5, 3}, {6, 4}の4通りで,どちらがAでAが3, Bが1とAが1. Bが あるかで各2通り。 よって出方は4×2=8通り. 求める確率は 8 2 36 9 など2つの目が異なるので割り 当て方は2通りずつ(Ⅱ)も同 様 (17 (i) 目の組合せは {2,6}, {3,4} だから, (i) と同様に目の出方は 4 1 2×2=4通り. よって確率は = 36 9 (2) さいころを区別すると, 目の出方は 63=216通りある. ←同様に確からしい. 3つの目を a, b, c として, a=b+c を満たす(a,b,c) [ただしbsc] を調 ここは3つの目の組合せ. べると, (2, 1, 1), (3, 1, 2), (4, 1, 3), (4, 2, 2), wwwwwwww wwwwwww (5, 1, 4), (5, 2, 3), (6, 1, 5), (6, 2, 4), (6, 3, 3) wwwwww ←αが小さい順, αが同じならが 小さい順. 目の割り当て方は,が各3通り,それ以外は各3!=6通りあるから,216 ~ は,異なる目をどのさいこ 通りのうち、条件を満たすような目の出方は ろに割り当てるかで3通り. 3×3+6×6=45 (通り) ある. 全ては等確率では出 45 5 ません!! 従って、求める確率は 216 24 4 演習題 (解答は p.47) 1から6までの目をもつ立方体のサイコロを3回投げる。 そして 1,2,3回目に出た目 をそれぞれ a, b, c とする. (1) a, b, c を3辺の長さとする正三角形が作れる確率を求めよ. (2)/α,b,cを3辺の長さとする二等辺三角形が作れる確率を求めよ。 (3) a, b, c を3辺の長さとする三角形が作れる確率を求めよ. (滋賀医大) まず a b c の組合せを 列挙する. 何かが小さい 順など, 系統的に数えよ う. (1) (2) 以外は3辺 の長さが相異なる. 37

回答募集中 回答数: 0
英語 高校生

教えてほしいです

3 次の英文を読み, 空所に入れるのに最も適切なものを, それぞれ下の①~④のうちから一つずつ選びなさい。 Cigarette smoking has negative effects not only on the body of the person who smokes but also on the body of someone who regularly breathes in second-hand smoke. Some of the most obvious effects are high blood pressure, sleep disorders, heart failure, and lung cancer. Despite such harmful consequences, ( 10 ). It has been reported that smoking creates feelings of pleasure, reduces tension, and promotes close relationships. Many smokers admit that smoking is a bad habit. ( 11 ), they tend to think that the number of cigarettes that they smoke is below the danger level and thus are not worried about the risk. Some even feel that they do not breathe in the smoke and that a cure for cancer will be found before they become ill with the disease. We have to admit that smoking is a habit which is difficult to break ( 12 ) the nicotine found in tobacco goes into the blood and stimulates the brain, making smokers feel pleasant for several minutes. What is more, the smoker usually feels anxious and wants to have another cigarette. ( 13 ) the policies that now ban smoking in most public areas, the stress that people often experience at work and at home can force them to smoke. ( 10 ) ①some people decide to stop smoking millions of people continue to smoke ( 11 ) the price of cigarettes has risen ①smoking is more harmful than drinking Therefore 2 While ③ Of course 4 However (12) 1 because 2 as a result 3 but SO (13) ①Despite 2 Although (3) But 4 Yet

回答募集中 回答数: 0
数学 高校生

汚くて申し訳ないです💦 inf(写真下部)について質問です。 文章の理解はできたのですが、★部分をもう少し具体例で理解したいと思いました。例えばどんなものがあるのか教えていただけませんか?

トを問 4で外接する2円 0, 0' がある。 Aにおける共通接線上 点A の点Bを通る1本の直線が円0と2点C, Dで交わり, B 00000 明せよ。 を通る他の直線が円 0′ と 2点E, F で交わるとする。こ のとき, 4点C, D, E, F は1つの円周上にあることを証 OA OXF p.394,395 基本事項 3. 基本 82 403 CHART & SOLUTION 1つの円周上にあることの証明 方の定理の逆 4点が1 から、「べきの定理の逆」 を利用する方針で考える。 1つの円周上にあることは, 「円周角の定理の逆」, 「内角と対角の和が180°」, 「方べ の定理の逆」のいずれかを利用すれば示せるが,この問題では角度についての情報がな 4点C,D,E,F を通る円をかいてみると, 示すべきことが BC BD BE BF であること が見えてくる。 円0において,方べきの定理から B E ← 接線 BA, 割線 BD ←接線BA, 割線 BF BC・BD=BA2 円 0′において, 方べきの定理から 0 よって BE・BF=BA2 BC・BD=BE・BF ゆえに、方べきの定理の逆から、共 3 10 円と直線、2つの円 4点C,D,E,Fは1つの円周上にある。 に 内 inf 方べきの定理 PA・PB=PC・PD において PA・PB の値をべきという。ここで,円の半径をr とすると, [1] A 右図の [1] のとき PA・PB=PC・PD=(CO+OP)・(QD-QP) =(z+OP)(r-OP)=-QP2 [2] C D OP B B 右図の [2] のときは,同様の計算で PA・PB=OP2-r2 したがって, PA・PBの値は|OP2-2に等しい。OP2は, 点Pが固定されていれば一定の値である。すなわち 定点Pを通る直線が0と2点A,Bで交わるとき, PA・PBの値は常に一定である。 PRACTICE 90 金 円に、円外の点Pから接線 PA, PB を引き, 線分AB と PO の交点を通る円Oの弦 CD を引く。 このとき, 4点P,C, ODは1つの円周上にあることを証明せよ。 ただし, C,Dは P 足理 26 MI D B

回答募集中 回答数: 0