学年

教科

質問の種類

数学 高校生

(3)の問題です。写真の2枚目にあるものが私の考えです。こうならないのは何故ですか?

(1) y=f(x)のグラフの頂点の座標を求めよ。 また、 すべてのxの値に対してf(x)>0となる定数の値の範囲を 求めよ。 ただし、 答えは解答欄に答えのみでよい。 y=(x-m)²-m2+m+6 と変形出来るのでy=f(x)の頂点の座標は (m, -m²+m+6) また、 すべてのxの値に対してf(x) > 0 となる条件は最小値-m2+m+6が正となることである。 -m² + m +6>0 ART m²-m-6<0 (m-3Xm+2)<0 -2<m <3 は正の数より0<m<3 頂点の座標 (m, -m²+m+6) 定数mの値の範囲 0<m<3 (2) 定数mの値の範囲は (1) で求めた範囲とする。 原点をO, y=f(x)のグラフの頂点をA, 点 (8, 0) を B とする。 このとき, △OAB の面積の最大値と,そのときの の値を求めよ。 【6点】 (1)より0<m<3のとき頂点Aは常に軸より上にあり △OABの面積をSとすると S=8-m²+m+6)=-4(m²-m-6) =-(-))+24 --~-)+25 0m3であるがら, 面積Sはm=1のとき最大値25をとる。 【各3点計6点】 A B 8 フ における最小値を求めよ。 【8点】 y=(x-ma-m2+m+6 よって, y=f(x)のグラフは下に凸の放物線で、軸は直線x=mである。 [1] 0<<8のとき y↑ f(x) の最小値はf(m)=-ma+m+6° [2] 8m のどき 0x8減少するから, 最小値はf(8)=15m +70 したがって 0<<8のとき 8m のとき m O で最小値-m2+m+6 8で最小値-15㎖+70 すなわち²-m-60 これを解くと -2<m<3 0<<8であるから0<m<3 [2]8 のとき 最小値は f(8)=15㎖+70 よって -15m +70> 0 14 これを解く 1/2 m<- 8 x これは8m を満たさない。 以上から、求める の値の範囲は 0<m<3 私の考え 0 m <0 m (4) 0x8 すべてのxの値に対してf(x)>0となる定数mの値の範囲を求めよ。 【10点】 ②0≦m≦8 最小 x ②8cm 0228 のすべてのxの値に対してf(x) > 0°となるための条件は、0≦x≦8 におけるf(x)の最小値が正となる ことである。 (2) より [1] 0<<8のとき 最小値は f (m)=-²+m+6 よって -m²+m+6> 0 Bek

回答募集中 回答数: 0
数学 高校生

なぜ正接を求めるのに1+tan^2B…を使うのですか?

258 00000 基本例 157 三角形の辺と角の大小 △ABCにおいて, sin A: sin B: sinC=√7: :1が成り立つとき (1) △ABCの内角のうち、最も大きい角の大きさを求めよ。 (2) △ABCの内角のうち、2番目に大きい角の正接を求めよ。 指針 解答 なぜ 使うの 練習 ② 157 (1) 正弦定理 (1) 正弦定理より、a: bic=sin A sin B: sin C が成り立つ。 これと与えられた等式から最大辺がどれかわかる。 三角形の辺と角の大小関係より、最大辺の対角が最大角 であるから 3辺の比に注目し, 余弦定理を利用。 a<b>A<B a=bA=B a>b⇒A>B B (三角形の2辺の大小関係は、その対角の大小関係に一致する。) (2) まず、2番目に大きい角のcos を求め, 関係式1+tan20= COS A= a b C sin A sin B sin C cos B= a:b:c=sinA: sin B: sin C これと与えられた等式から よって, ある正の数んを用いて a=√7k, b=√3k,c=k SI-81+³81 と表される。ゆえに, α が最大の辺であるから, A が最 大の角である。 +008-as a 余弦定理により (√3k)²+k²-(√7 k)² 2-√3 k.k よって, 最大の角の大きさは A=150° (2) (1) から2番目に大きい角はBである。 余弦定理により k2+(√7k)²2-(√3k)² 2.k. √7 k 等式1+tan² B= 1 cos2 B から 1= tan B= 3 V 25 により a:b:c=√7:13:1 = tan'B -(2√7)²-1 28 cos² B 5 25 A> 90° より B90° であるから tan B>0 したがって (*)014 3 5 -3k² 2√3k² 5k2 2√7k² |-- -1= 3 2 5p0 2√7 549 25 /p.248 基本事項 4 重要 159 30- 5 8 7 sin A sin B sin C が成り立つとき 1 cos²0 ® を利用。 6 a sin A sin B a/a: b=sinA: sinB b ・から sin B sin C b:c=sin B: sinC 合わせると (*) となる。 kを正の数として C から △ABCにおいて (1) AABCの内角のうち、2番目に大きい角の大きさを求めよ。 (2) ABC の内角のうち,最も小さい角の正接を求めよ。 のとりうるの | ABCが魅角三冊 (1) 三角形の成立 b S=k とおくと a=√7k, b=√3k. c=k a>b>cからA>B>C よって A が最大の角で ある。 √3 k B √7 k 三角比の相互関係。 (p.238 例題 144 参照。) (1) の結果を利用。 △ABC は鈍角三角形。 C [類 愛知工大] 851 VD #=38 7=81 (0) 角三角形に 角となる場合を 例えば CA (3) ∠Bが となり、 等式が得られる。 軽よって (①) 三角形の成立条件 く (2) どの辺が最大辺に [] I<x<3のとき の対角が90°より ゆえに すなわち よって ゆえに <x<3との共通料 2xくらのとき X² (x₁

回答募集中 回答数: 0
数学 高校生

98番の解説をお願いしたいです🙇‍♂️🙇‍♂️ お時間のある方教えてくださいませ😭

96. 円C:x+y+(k-2)x+ky+2k-16=0は定数kのどのような値に対しても2点A(ア を通る。但し、ア> とする。 線分ABが円 C の直径となるのはk=オ 1). のときである。 3 97. 座標平面上の3点(0, 0) (11) (a +1)を通る円をCとする。 (1) 円Cの方程式をαを用いて表せ。 (2) 円Cの半径が5となるときのαの値と円Cの中心の座標を求めよ。 98) 平面上に2点A(1, 0), B(-1,0)が与えられているとき、条件2PA≦PB≦3PA を満たす点Pの存在範囲を図示せよ。 99. 平面上の3点(13) (75), (a, 4)を頂点とする三角形の面積が5であるとき、 正の数aの値を求めよ。 2 100.2つの円x+y=1 と(x-a)+(y-anl) =1が接するのは、a= のときであり、 2つの円の中心が最も 近くなるのはa=イのときである。 101. xy平面上に、円C: (x-1)+(y+2)=25及び直線入 : y=3x+k があり、 異なる2点A,Bで交わっている。 k の値が変化するとき、 線分ABの中点Mの軌跡を求めよ。 102点(2√32) から円x2+y=4に引いた接線の傾きと、それぞれの接点の座標を求めよ。 103. 直線y=ax-4a-2 を入とする。 入は定数aの値にかかわらず点ァ を通る。また、入が円x+y=4 と共有点を 持たないための a の条件は である。 ○ REDMI NOTE8 PRO ∞ (AI QUAD CAMERA+y=a (a>0) と円C:x2+y=4について、 C の中心と入との距離dはア であるから、 C と入が 共有点を持つための条件はOsa≦]である。また、Cが入から切り取る線分の長さが2であるときは

回答募集中 回答数: 0
数学 高校生

(3)の丸したところが分かりません!なぜ1/2にするのですか?解説お願いします🙇🏻‍♀️

第4問 (選択問題) (配点20) 太郎さんのクラスと花子さんのクラスでは、修学旅行で新幹線を利用すること になった。二つのクラスの人数は合わせて80人である。 また,新幹線の座席は, 2列シートまたは3列シートになっている 使用するシートの中に空席ができないように座席の割り振りを考えよう。 (1) 2列シートをxシートだけ使い, 3列シートをシートだけ使うとする。 このとき、x,yは方程式 2x+3y=80 を満たす。 ① において, x=1 とすると, y = アイであり 2・1+3・ アイ=80 が成り立つ。 ①,②から, 方程式 ① の整数解を求めると, kを整数として ウk+1,y= エオ+ カキ と表される。 方程式 ① を満たす0以上の整数x,yの組は全部でクケ組ある。 座席を割り振るとき, できるだけ2列シートだけや3列シートだけに偏るこ とがないようにしたい。 すなわち, |x-yl が最小になるようにするとき 2列シートをコサ シート, 3列シートをシスシート 使用すればよい。 .2 (第7回 19 ) (数学Ⅰ・数学A 第4問は次ページに続く。) (2) (1)より、二つのクラスの80人の座席を使用するシートの中に空席ができ ないように割り振ることができた。 次に、人数Nが2以上の場合、どんな人数であっても、使用するシートの 中に空席ができないように座席を割り振ることができることを確かめよう。 例えば, N = 2,3,4,5について などと表すことができる。 一般に, 2以上のある自然数Aについて, 0 以上の整数x,yを用いて 2x+3y= A と表されたとする。 このとき, x,yのうち少なくとも一つは正の数であり, y≧1のとき 20 セ +3( x≧1のとき 2 =2のときは, x=1, y=0 として N = 2.1+3.0 N=3のときは, x=0, y=1として N=2.0+3・1 N=4のときは, x=2, y=0 として N=2・2+3.0 人間 N=5のときは, x=1, y=1として N=2・1+3・1 t (0) ソ x-2 y-2 タ チ +3 チ (1) x-1 =A+1 と, A +1 を表すことができる。 これを繰り返せば、2以上のどのような自然数も2x+3y (x,yは0以上の 整数) の式で表すことができる。 y-1 =A+1 セ の解答群 (同じものを繰り返し選んでもよい。 ) (2) y タ ≧0, ≧0, (第7回20) x+1 の解答群 (同じものを繰り返し選んでもよい。) ③ y+1 チ N N (4) x+2 y+2 (数学Ⅰ・数学A 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

(3)の丸したところが分かりません!なぜ半分にするのですか?解説お願いします🙇🏻‍♀️

第4問 (選択問題) (配点20) 太郎さんのクラスと花子さんのクラスでは、修学旅行で新幹線を利用すること になった。二つのクラスの人数は合わせて80人である。 また,新幹線の座席は, 2列シートまたは3列シートになっている 使用するシートの中に空席ができないように座席の割り振りを考えよう。 (1) 2列シートをxシートだけ使い, 3列シートをシートだけ使うとする。 このとき,x,yは方程式 2x+3y=80 を満たす。 ①において, x=1 とすると, y = アイであり 2・1+3・ アイ=80 が成り立つ。 ①,②から, 方程式 ① の整数解を求めると, kを整数として x= ウk+1, y = エオ+ カキ と表される。 方程式 ① を満たす0以上の整数x,yの組は全部でクケ組ある。 座席を割り振るとき,できるだけ2列シートだけや3列シートだけに偏るこ とがないようにしたい。 すなわち, |x-yl が最小になるようにするとき 2列シートをコサ シート, 3列シートをシスシート 使用すればよい。 ..② ( 第7回 19 ) (数学Ⅰ・数学A 第4問は次ページに続く。) (2) (1)より、二つのクラスの80人の座席を使用するシートの中に空席ができ ないように割り振ることができた。 次に,人数Nが2以上の場合、 どんな人数であっても、 使用するシートの 中に空席ができないように座席を割り振ることができることを確かめよう。 例えば, N = 2,3,4,5について などと表すことができる。 =2のときは, x=1, y=0 として N = 2.1+3.0 N=3のときは, x=0, y=1として N = 2.0+3・1 N=4のときは, x=2, y=0として N=2・2+3.0 人 N=5のときは, x=1, y=1として N=2・1+3・1 一般に, 2以上のある自然数Aについて 0 以上の整数x,yを用いて 2x+3y=A と表されたとする。 このとき, x,yのうち少なくとも一つは正の数であり, y≧1のとき 20 セ +3( + ≧0, t (0) x-2 ソ チ x≧1のとき 20 と, A +1 を表すことができる。 これを繰り返せば, 2以上のどのような自然数も2x+3y (x,yは0以上の 整数)の式で表すことができる。 タ y-2 (1) x-1 +3 チ タ の解答群 (同じものを繰り返し選んでもよい。 ) =A+1 y-1 =A+1 (2) x タ ≧0, x+1 の解答群(同じものを繰り返し選んでもよい。) (2) y (3) y+1 (第7回20) チ 2 2 (4) x+2 y+2 (数学Ⅰ・数学A 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

(3)が分かりません!考え方を解説お願いします🙇‍♀️

第4問 (選択問題)(配点20) 太郎さんと花子さんは、 数列の漸化式に関する問題について話している。 問題数列{an}は を満たしている。 このとき, an を求めよ。 また, Sm = |a|+a2+as|+...... + anl とする。 S" を求めよ。 太郎: 一般項an を求めるには, 漸化式 an+1=-2a+6 を an+1 - α = p (an-α)の 形に変形するといいね。 花子:そうだね。 このことを使ってα を求めることができるね。 一 100 20.0 20.0 0.0 0.0 20.0 |α1=5, an+1=-2an+6 (n=1,2,3,...) isht e vona o trae ni kaz8.0 (1) 数列{an}の一般項は OCALOOLAG となる。 I an= の解答群 On-1 ア + ①n オ a=-2a+6 30=6 X=2 anti-2=-2an-2 ②n+1 太郎 : S はどうすれば求められるかな。 花子: 具体的に数列の項を求めてみると, a2=-4,43=14,44=22だね。 (第4回13) 一般項の式から考えると,数列{an}の偶数番目の項は負の数奇数番目の 項は正の数となるね。 太郎: 偶数番目までの項の和と, 奇数番目までの項の和というように場合分け をして考えたらどうかな。 3P 3 Acc an-2=-3-1-217-) gh=3(-21h +2 (数学ⅡI・数学B 第4問は次ページに続く。) (2) nが偶数のときを考える。 S=カキ である。 nが偶数のとき, n=2mmは自然数)と表すことができるから S2m=|a1|+|az|+|a3++α2m-1|+|12m | =|a1|+|a3|+|as|+......+|a2m-1| と変形できる。 このとき となり となる。 a₁+as+as+...+ a2m-1=202 +|az|+|a4|+|a6|+......+|azm| = a₁+as+a5++a2m-1-(a₂+a₁+as++ a2m) e(k-1) a2+ax+a+.………+α2m = Za であるから a2k-1= k=1 ②24=②サシ S2m = a2k-11 ス クケ k=1 tz a2k = a2k ケ a+=592= 5-4414-2²3-7 26 19 k-1 a2k-1 ソ -1 + + コ - コ 3.(-2)24-2 + = 3-4k-1 + J 3(-2) こ -6 ( 2 (01 (数学ⅡⅠ・数学B 第4問は次ペ 3.4k-1

回答募集中 回答数: 0