学年

教科

質問の種類

数学 高校生

この問題の(2)を教えて欲しいです!

和から等比数列の決定 例題12 公比が3,初項から第6項までの和が728の等比数列の初項を求めよ。 00000 (2) 初頭が2,公比が3, 和が242である等比数列の順数を求めよ。 (3) 初項a,公比がともに実数の等比数列について、 初項から第n項までの 和をすると, Sa = 3, S627 であった。このときの値を求めよ。 (3) 大阪工大]A33 基本事項 1 SOLUTION CHART 等比数列の決定 まず初項αと公比r 和が与えられた問題では、数々についても考える。 の値が与えられていないので, 和の公式を使うとき,r=1 と キ1 に分けて考える (1),(2),(3) (3) 必要がある。 解答 (1) 初項をaとすると、条件から よって, α(1-729)=4・728 から ( 2 ) 項数をnとすると,条件から 3-1=242 ゆえに したがって, 項数は n=5 これに ① を代入すると よって r3=8 r=2, ① から all-(-39). a=-4 2(3-1) 3-1 すなわち a= SHOREH? (3 S3=3a, S6=6a (3) r=1のとき 3a=3,6a=27 を同時に満たす α は存在しないから不適。 a(³-1) r-1 F"(x + a(rº-1) FUR ...... ② y=1のとき, S3=3 から また, S6 = 27 から 1=27 r-1=(x3)2-1=(x-1)(23+1) であるから,②より a(r³−1). (r³+1)=27 r-1 -=728 -=242 3"=35 -=3 3(3+1)=27 rは実数であるから r=2 (1) 公比 3. 項数 n=6の等比数列の和が 728 である。 S₁ = a (x²-1) 243-35 ← 等比数列の和の公式を 使うときは、まず、公比 rが1であるかどうか を調べる。 a(r³-1) r-1 の 2 7a=3 W -•(³+1)=27 に3を代入 PRACTICE 12② 第3項が 12, 第6項が-96である等比数列 (公比は実数) において, 第7項 は 3072 であり,初項から第 項までの和は513である。 実数 r>0 を公比とする等比数列 an = ar”-1 (n=1,2,....) において,初項か ら第5項までの和は16で、第6項から第10項までの和は144 である。このとき, 第11項から第20項までの和を求めよ。 001J [愛知]

解決済み 回答数: 1