学年

教科

質問の種類

数学 高校生

(4)がよくわからないです。 あと、それぞれの問題の条件違いによって、解くときに何が変わるかわからないです。

赤、青、黄、緑の4色のカードが5枚ずつあり、各色のカードに 1から5までの数字が1つずつかいてある. これら20枚のカー ドから3枚を同時にとりだすとき,次の問いに答えよ. (1) とりだし方の総数をNとするとき,Nを求めよ. (2)3枚とも同じ番号になる確率P を求めよ. (3)3枚のカードのうち,赤いカードが1枚だけになる確率 P を求めよ. (4)3枚とも色も数字も異なる確率 P3 を求めよ. 精講 1枚のカードは色と数字の2つの役割をもっていますが,(2)では香 だけ,(3)では色だけがテーマになっています。 だから,では,1,2,3,4,5とかいたカードがそれぞれ4枚ず つある」と読みかえて, (3)では 「赤が5枚, 赤以外が15枚ある」と読みかえま す.もちろん,(4)では,色と数字を両方考えますが,一度に2つのことを考え にくければ ①まず, 色を選ぶ ②色が決まったところで, その色に数字を割りあてる と2段階で考えればよいでしょう。 (1)20枚の中から3枚をとりだすので、 20.19.18 N=20C3= =20・19・3=1140 3.2 (2)1,2,3,4,5とかいたカードが4枚ずつあるので3枚とも同じ番号 になるのは, 5×4C3=20 (通り) 201 P₁= N57 【数字1を3枚選ぶ方 法は3通り (3) 5枚の赤から1枚, 15枚の赤以外から2枚選ぶ方法は 青, 黄緑 15×14 5C115C2=5x- -=5.15.7 2 は区別する 必要はない

回答募集中 回答数: 0
数学 高校生

1ページ目の(2)が、なぜ2ページ目の(3)のようにならないのでしょうか、区別の仕方が分からないです。教えてください。

mentos] 190 基本 111 2次不等式の解法 (2) 次の2次不等式を解け。 (1)+2x+1>0 (3) 4x24x+1 (2) -4x+5>0 (4)~3x²+85-6>0 の不等式を ( [指針 平方完成した式から判断できる。 前ページの例題と同様、2次関数のグラブを いて、不等式のを求める。グラフととの共 点の有無は、不等号を番号におき換えた2次方 程式 ax+bx+c=0の の、または く '+2x+1=(x+1) であるから. 解答 不等式は よって、 は (x+1)0 1以外のすべての実数 (2)x4x+5=(x-2)+1であるから, 不等式は (x-2) +10 よって、解はすべての実数 (3) 不等式から 4x³-4x+150 4x4x+1=(2x-1)であるから, 不等式は (2x-11 50 1 よって、 解はx= 2 (4) 不等式の両辺に-1を掛けて 3.x²-8x+6<0 2次方程式 38x+6=0の判別式を D <KKK ADの場合、 基本形に 4x<-1-1 てもよい。 ADDの場合 基本形に、 関数コースー は、すべての y>0 して のとき 1のとき 721 (1) C Dとすると 22-4-3・6=-2 の係数は正で、かつであるから,すべてから、 xに対して3x²-2x+6> 0 が成り立つ。 よって、与えられた不等式の解はない 不等式の両辺に1を掛けて 3x-8x+6<0 x+6=3x1+1/3であるから、 x8+60を満たす実数は存在しない。 よって、与えられた不等式のはない +6 へのグラフと 住むグラフが下に あることから、すべ にして 次の2次不等式を解け。 111 (J)+x+420 (3) -4x+12-920 (2) 2x+4x+3<0

回答募集中 回答数: 0