学年

教科

質問の種類

数学 高校生

(ィ)の解説でan+2=an+1+anができるのが何故か教えて欲しいです!!

210 第7章 数 列 基礎問 135 場合の数と漸化式 6/5 (1)5段の階段があり, 1回に1段または2段 登るとする. このとき, 登り方は何通りある か. ただし, スタート地点は0段目とよぶこ とにする. (右図参照) (2)(1) と同じようにn段の階段を登る方法が an通りあるとする. このとき, (ア) α1, a2 を求めよ. (イ) n≧1 のとき, an+2 を αn+1, an で表せ. ◎(ウ) αg を求めよ. [N 139 211 (イ) 1回の登り方に着目して (n+2) 段の階段を登る方法を考えると次 の2つの場合がある. star ① 最初に1段登って, 残り (n+1)段登る ② 最初に2段登って, 残りn段登る ① ②は排反で (n+1) 段登る方法, n段登る方法はそれぞれ 舎の事象がすまたま、他方の事象 起きまない状態 an+1 通り, an通りあるので、 an+2=an+1+an an+2=an+1+an (ウ)(イ)より, ([+a)o= mi 平 =246+α5=2(astq4)+as 精講 (1) まず, 1段,2段, 2段と登る方法と2段, 1段, 2段と登る 方法は,異なる登り方であることをわかることが基本です. 次に、 1段を使う方法は5が奇数であることから1回,3回, 5回のどれかです. そこで、1と2をいくつか使って, 和が5になる組合せを考えて,そのあと 入れかえを考えればよいことになります. (2)(イ)これがこの135のメインテーマで, 漸化式の有効な利用例です. 考え 方は,ポイントに書いてあるどちらかになります. この問題では, どちらで も漸化式が作れます. (ウ)漸化式が与えられたとき,一般項を求められることは大切ですが, 漸化 式の使い方の基本は番号を下げることです. as=a+a6 (α6+α5)+a6 参考 m =3a5+2a=3(α+α3) +2a4 =5a4+3a3=5(a3+α2) +3as =8a3+5a2=8(a₂+a1)+5a2 10219 13+84=13×2+8×1=34 (通り) IA 91 ポイント I. (ウ)の要領で α5 を求めると, αs=3a2+2a1=3×2+2=8 (通り)となり,(1)の答と一致します。 Ⅱ. 最後の手段に着目するときは,次の2つの場合となります. ① まず (n+1) 段登って、最後に1段登る ② まずn段登って、最後に2段登る ポイント 場合の数の問題で漸化式を作るとき,次のどちらか ① 最初の手段で場合分け ② 最後の手段で場合分け 第7章 解答 (1)5段の階段を登るとき, 1段登ることは奇数回必要だから, 1段を1回使う組合せは, 1段, 2段, 2段 3回使う組合せは, 1段, 1段, 1段2段 5回使う組合せは、 1段, 1段, 1段1段, 1段で 演習問題 135 横1列に並べられたn枚のカードに赤か青か黄のどれか1つの それぞれ,入れかえが3通り, 4通り、1通りあるので 3+4+1=8 (通り) (12,2)(2112)(2.2.1) (11.1.1) (2) (ア) 1段登る方法は1つしかないので, a=1 2段登る方法は,1段, 1段と, 2段の2通りあるので, a2=2 色をぬる. 赤が連続してはいけないという条件の下で,ぬり方が an 通りあるとする. (1) α1, 42 を求めよ. (2)n≧1 のとき, an+2 を an+1, an で表せ. (3) αg を求めよ.

回答募集中 回答数: 0
数学 高校生

質問失礼します! この問題、波線部分の数え上げは書き出してみて、実験してから一般化して考える感じでしょうか? 解答を作れるようになる考え方の流れを教えて頂きたいです。🙇🏻‍♀️

147 例題 14-4 袋の中に3枚(n≧2) のカードがあり,それぞれに, 1から2nまでの整数のど れか1つが書いてある. 奇数 1, 3, 2n-1の書かれたカードは各1枚, 偶数 2, 4,..., 2n の方は各2枚である. この箱から同時に2枚のカードを無作為に選び、 そのうち最大の数字を X とする. (1) 2≦k≦2mとするとき, 確率P (X≦k) を求めよ. (2) 2≦k≦2n とするとき 確率 P (X=k) を求めよ. 【解答】 (1) 3枚のカードから2枚を取り出す方法は, K:50時 11③⑤.7. よって, 以上まとめて, P(X≦k)= 3n(3n-1) k(3k-2) 4n(3n-1) (k-1)(3k-1) 4n(3n-1) (kが奇数のとき), P(X≦k) = k(3k-2) 4n(3n-1) (kが偶数のとき)。 3nC2= (通り) 3n(3n-1) 2.4.6.8. (2) (i) が奇数のとき, P(X=k)=P(X≦k) -P (X≦k-1). 2 (i) が奇数のとき (24.6.8. k+ 以下のカードは P(X=k)= (k-1)(3k-1) (k-1)(3k-5) k-1 n(3n-1) 4n(3n-1) 4n(3n-1) k+1 奇数のカードが #x, =k-1 )が偶数のとき, 偶数のカードが1枚 P(X=k)=- k(3k-2) (k-2)(3k-4) 4n(3n-1) 4n(3n-1) k+1 計 +k-1= 3k-1 2 枚あるから, X≦kとなる場合の数は 2(k-1) n(3n-1) 3k-1.3k-3 異なる 2 14- 2 よって、31枚から (2枚取り出す。 99 (3k-1)(3k-3) P(X≦k)= 3n(3n-1).4 (3k-1)(k-1) () が偶数のとき, k以下のカードは 4n(3n-1) 奇数のカードが1枚 偶数のカードがk枚 +k=k枚あるから, X≦kとなる場合の数は 22C2= 2 148

回答募集中 回答数: 0
数学 高校生

221.223.224が答えを見てもわかりません。 詳しく教えていただけると助かります。 また、場合の数と確率をとく時のコツがあれば教えて頂きたいです。

題 次の集 2 集合の要素の個数 (2) 113 : B 第1章 場合の数と確率 ② 221 デパートに来た客100人の買い物調査をしたところ, 商品Aを 買った客は 68 人, 商品Bを買った客は53人であった。 次のよう な客は,最も多くて何人か。 また, 最も少なくて何人か。 (1)A,Bの両方を買った客 (2)A,Bのどちらも買わなかった客 222 A={nnは48の正の約数}, B= {n|nは30以下の正の奇数}, C={n|n は 54の正の約数} とする。 このとき,次の集合の要素の個数を求めよ。 (1) A∩B, BC, CA (2) ANBOC (3) AUBUC c) 2231から20までの整数のうち、次の数の個数を求めよ。 (1)3,5,8の少なくとも1つで割り切れる数 (2)3でも5でも8でも割り切れない数 (3)3または5で割り切れるが,8で割り切れない数 母の 発展 224 ある大学の入学者のうち、他のa大学, b大学, c大学を受験 した者全体の集合を,それぞれA,B,Cで表す。 n(A)=65,n(B)=40,n(A∩B)=14,n(C∩A)=11, n(BUC)=55, n(CUA)=78, n(AUBUC)=99 のとき、次の問いに答えよ。 (1) c大学を受験した者は何人か。 (2)a 大学, b 大学, c大学のすべてを受験した者は何人か。 (3)a 大学, b 大学, c大学のどれか1大学のみを受験した者は 何人か。 ヒント 2242) まず, n (B∩C)を求める。

回答募集中 回答数: 0
数学 高校生

(2)について なぜ側面の塗り方は数珠順列ではなく、円順列なのですか?

PR 第1章 場合の数 209 立方体の各面に、隣り合った面の色は異なるように, 色を塗りたい。 ただし, 立方体を回転させ 21 て一致する塗り方は同じとみなす。 (1)異なる6色をすべて使って塗る方法は何通りあるか。 (2)異なる4色をすべて使って塗る方法は何通りあるか。 (1) 上面の色を1つ固定すると,下面の塗り方は 5通り そのおのおのに対して, 側面の塗り方は,異なる 4個の円順列で区別 できる (4-1)!=3!=6(通り) (1) 1色で固定 展開図 (上面を除く) 下面 1章 PR PP 210 面の塗り方は異なる2個の円順列に等しく (2-1)!=1!=1(通り) 長方形の 125 よって、異なる6色をすべて使って塗る方法は 5×6=30(通り) 6つの面を異なる4色で塗るには, 1組の向か い合う2面を1色で塗り, もう1組の向かい合う 2面を別の1色で塗る。 4色から2組の向かい合う面に塗る2色の選び方 八重は4C2=6(通り) 長方 異なる色 側面は円順列 上下の面の色が異なるから, じゅず順 列ではない。 HINT (2) 回転させると一致する場 合があるから注意。 同色で 固定 色んな色 2組の向かい合う面の色を固定すると、残りの2 共 MAHOES 同色で 固定 固定すると同 まわしたとき かぶってほう ACTUACIOMAHA 2!通りではない。 のとき よって、異なる4色をすべて使って塗る方法は [1 2 6×1=6(通り) (回転させると一致する) 35-15( () 04-8+Se n (n≧2) を求めよ。 通りあるか。 ed

回答募集中 回答数: 0
生物 高校生

高校生物です!! (2)の(力)がZZになる理由とテトラサイクリン処理をしたあと、(ケ)と(シ)がマイナスになる理由を教えてください!! どなたかよろしくお願いします🙇‍♀️

[リード] [C] 大学入学共通テスト対策問題 リード C+ 26 次の文章を読み、以下の問いに答えよ。 ある種の蛾は, 性染色体の構成がZW/ZZ (雌がZW, 雄がZZ) であり, 集団の雌 つ採集したところ, A 地域では雌= 4匹, 雄= 6匹であり, B 地域では雌= 5匹, 雄 雄比が1:1であることが知られている。 実際に良子さんが、 2つの地域で10個体ず =5匹であった。 ところが C 地域から 10個体の蛾を採集して, 外部形態から雌雄 を判定したところ, 雌=9匹, 雄= 1匹であった。 そこで良子さんは以下のレポートを作成した。 C地域の蛾の集団では、 雌雄比が1:1ではないのか、もしくは偶然に極端な 雌雄比で採集されてしまったのか,どちらの可能性が高いのかを考察する。 そのために以下の2つの排他的な仮説を立て,仮説のもとで雌雄比9:1が 十分起こりそうなことであるならば仮説1を採択し, 起こる確率が小さければ (ここでは 0.05 以下とする), 仮説2を採択することとする。 仮説1:C 地域の蛾の雌雄比は1:1である。 仮説2: C 地域の蛾の雌雄比は1:1ではない。 雌雄が混在する集団から無作為に10個体の蛾を採集した場合, すべてが雌ま たは雄である場合の数は(ア)通りである。 また, 1個体のみが雌または,1 個体のみが雄である場合の数はイ)通りである。 C 地域の雌雄比が1:1 (仮 説 1) ならば,このようなことが発生する確率は((ア)+(イ))/(ウ) で求められる。 この値は 0.05 よりも小さいので,仮説1は棄却され, 仮説2を 採択する。 もっとも, C 地域の蛾の雌雄比は1:1であったのに、 今回の採集で雌雄の数 がたまたま雌= 9匹, 雄=1匹になってしまい, 本当は仮説が正しかったにも かかわらず仮説2を誤って採択してしまった可能性は残っている。 (1) 空欄(ア)~ (ウ)に当てはまる最も近い数値を, 次の①~⑧からそれぞれ選べ。 ②2 ③ 10 ④20 ⑤ⓢ 100 6 200 71000 8 2000 2) 良子さんは仮説2 を受け入れたものの, さらに研究を進めることにした。 文献調 査をしたところ, ある種の蚊においても, 雌雄比が著しく雌にかたよる地域があ り, 「ある種の原核生物が雌の蚊に寄生したことが,その原因として考えられる」 と報告されていた。 良子さんが C 地域の蛾の雌とA地域の雄を実験室で交配した ところ, 生まれてきた子世代 (F,) がすべて雌になる親個体が存在した。 そこで, F, として生まれてきた雌の蛾を実験材料にして, A 地域の雄と交配し、その子世 代の幼虫のえさに, 原核生物の増殖を阻害する抗生物質テトラサイクリンを混ぜ て飼育し続けたところ, ある雌から生まれてきた子世代はすべて雄だった。 この

回答募集中 回答数: 0
生物 高校生

高校生物🪼です!! (2)の(カ)がZZになる理由とテトラサイクリン処理をしたあと、(ケ)と(シ)がマイナスになる理由を教えてください!! どなたかよろしくお願いします🙇‍♀️

[リード C' 大学入学共通テスト対策問題 リード C+ 26 次の文章を読み、以下の問いに答えよ。 ある種の蛾は、性染色体の構成がZW/ZZ (雌がZW, 雄がZZ) であり, 集団の雌 雄比が1:1であることが知られている。 実際に良子さんが、 2つの地域で10個体ず つ採集したところ, A 地域では雌= 4匹, 雄=6匹であり, B 地域では雌=5匹, 雄 =5匹であった。 ところが, C 地域から10個体の蛾を採集して, 外部形態から雌雄 を判定したところ, 雌 = 9匹 雄=1匹であった。 そこで良子さんは以下のレポートを作成した。 C地域の蛾の集団では,雌雄比が1:1ではないのか、 もしくは偶然に極端な 雌雄比で採集されてしまったのか,どちらの可能性が高いのかを考察する。 そのために以下の2つの排他的な仮説を立て,仮説1のもとで雌雄比9:1が 十分起こりそうなことであるならば仮説1を採択し, 起こる確率が小さければ (ここでは 0.05 以下とする), 仮説2を採択することとする。 仮説1:C 地域の蛾の雌雄比は1:1である。 仮説2: C 地域の蛾の雌雄比は1:1ではない。 雌雄が混在する集団から無作為に10個体の蛾を採集した場合, すべてが雌ま たは雄である場合の数は(ア)通りである。 また, 1個体のみが雌または, 1 個体のみが雄である場合の数は (イ)通りである。 C 地域の雌雄比が1:1 (仮 説 1) ならば,このようなことが発生する確率は((ア)+(イ))/(ウ) で求められる。この値は 0.05 よりも小さいので,仮説1は棄却され, 仮説2を 採択する。 もっとも, C 地域の蛾の雌雄比は1:1であったのに,今回の採集で雌雄の数 がたまたま雌= 9匹, 雄=1匹になってしまい, 本当は仮説が正しかったにも かかわらず仮説2を誤って採択してしまった可能性は残っている。 (1) 空欄(ア)~ (ウ)に当てはまる最も近い数値を、次の① ~ ⑧ からそれぞれ選べ。 ①1 ②2 ③10 4 20 5 100 6 200 71000 8 2000 (2) 良子さんは仮説2 を受け入れたものの, さらに研究を進めることにした。文献調 査をしたところ, ある種の蚊においても, 雌雄比が著しく雌にかたよる地域があ り, 「ある種の原核生物が雌の蚊に寄生したことが, その原因として考えられる」 と報告されていた。 良子さんが C 地域の蛾の雌と A 地域の雄を実験室で交配した ところ, 生まれてきた子世代(F,) がすべて雌になる親個体が存在した。 そこで, F] として生まれてきた雌の蛾を実験材料にして, A 地域の雄と交配し, その子世 代の幼虫のえさに, 原核生物の増殖を阻害する抗生物質テトラサイクリンを混ぜ して飼育し続けたところ, ある雌から生まれてきた子世代はすべて雄だった。 この

回答募集中 回答数: 0