学年

教科

質問の種類

数学 高校生

マーカー部分では判別式を使って何を示しているのでしょうか?教えてください🙇‍♂️

例題 112 接線に関する軌跡 放物線 y=x2 上の異なる2点P (1,2), Q(g, q2) における接線をそれぞれ l1, とし,その交点をRとする。 l と l2 が直交するように2点P, Qが動くとき 点Rの軌跡を求めよ。 [類名城大〕 ←例題 108 &2の方程式から交点の座標 (x, y) を求めると,xとyはともに,gの式で表される。 文字 g を消去する したがって, 方針は そこで用いるのは 2直線が垂直←(傾きの積)=-1 185 3 18 答案 x軸に垂直な接線は考えられないから,lの傾きをm とすると,その方程式は y=(x-p) すなわち y=m(x-p)+p2 x2=m(x-p)+p これと y=x2 を連立して 整理すると x²-mx+mp-p2=0 この2次方程式が重解をもつから, 判別式をDとすると D=(-m)2-4(mp-p2)=m²-4mp+4p²=(m-2p)2 P(p, p²) Q(g,g')) li l2 10. x R D=0 から (m-2p)=0 よって m=2p したがって, l の方程式は y=2p(x-p)+p² $73b5 y=2px-p² (1) 同様にして,l2の方程式は y=2qx-q² ②2 交点Rの座標 (x, y) は, 連立方程式 ① ② の解である。 ①をに おき換える。 と yを消去して整理すると 2(p-g)x=(p+α)(カーg) x=p+q J 2 y=2p⋅ b + q = p² = pq == 2 pag であるから これを①に代入して li⊥lz から 2p2g=-1 1 よって y=pq=- 4 また,p, q は 2次方程式 t2-2xt- ...... ③ の判別式を D' とすると D' 4 D = (-x)²-1⋅(-1) = x²+1 4 参考 左の答案は 今までに学習した 知識のみを用いて 接線の方程式を求 めているが,後で 学習する微分法を 用いるとより簡 単に求めることが できる(第6章微 ③ の解である。分法を参照)。 よって D'> 0 逆の確認。 ゆえに、任意のxに対して実数p,q(p≠q)が存在する。 1 したがって, 求める軌跡は 直線 y= =-4

解決済み 回答数: 1
数学 高校生

このまるで囲ってる2・5って何を意味するんですか? 問題は2枚目の⑶です

直線lと円 K: x+y-8x-6y=0 .... ② B の交点A,Bのx座標は,①,②より,yを 消去して得られる方程式 00 x²+(x+5)-8x-6(-1 1 x + 25)=0 の実数解である。これを解くと 3 9x2+(-4x+25)-72x-18(-4x+25)=0 x-8x+7=0 (x-1)(x-7)=0 x=1,7 条件より, 点Aのx座標がx=1,点Bのx座標が x=7 であるから, ①より 4y-3=- 1/(x-4)を展開 せずにそのまま円 K の方程式 (x-4)+(y-3)"=52 に代入 (x-4)2+{-1/(x-1)}= (x-4)²=9 x-4±3 A (1, 7), B(7, -1) y = -. 4 25 x+ 3 A(1, 7), B(7, -1) x=1,7 と計算してもよい。 完答への 道のり 直線OCの傾きから、直線の傾きを求めることができた。 直線lの方程式を求めることができた。 直線 l と円 K の方程式を連立させて、2交点 A,Bのx座標を求める 2次方程式を立てることがで ① 2 交点 A, B の座標を求めることができた。 (3) 点Dは第1象限にあるから, 点Dの座 標は (s, t) (s> 0, t > 0) とおける。 AV △ABD は正三角形であるから AD'=BD=AB2 AD=BD2 より (s-1)+(t-7)=(5-7)+(t+1)2 12s-16t=0 3 t= -s AD2 = AB2 より (s-1)+(-7)=(2-5)2) s2 +t2-2s-14t-50=0 ③④に代入して ③ ? s2+(21s)-2s-14・4/4s-50= 0 s2-8s-32=0 A(1, 7) K \C(4,3) <B (7, -1)+ 2点間の距離 2点(x1,y1)(x2,y2)の間の √(x2-x1)+(y2-yl) 線分ABの長さは円Kの 等しい。 6.8 |16s2+9s2-32s-168s-800 25s2-200s-800 = 0

解決済み 回答数: 2