学年

教科

質問の種類

数学 高校生

(2)の問題についてです。 計算したあとのmの値が-2と3なのはわかるのですが、なぜ-1が出てくるのか分からないので教えて欲しいです

この (1)xの2次方 に、定数mの値の範囲を定 (2)xの方程式 (+1)x+2(m-1)x+2m-5=0がただ1つの実数料 つとき、定数mの値を求めよ。 CHART&SOLUTION 方程式が実数解をもつ条件 ののた (2次の係数) 0 ならば 判別式 Dの利用 (1)「2次方程式」が実数解をもつための条件は D≧0 2.10% MOITU (2)単に「方程式」 とあるから,+1=0 (1次方程式) の場合と m+1≠0 (27 の場合に分ける 2次方程式の判別式をDとするとの係数? (1) 2次方程式であるからm-2≠0 よって m=2 2次方程 基本 例題 80 右の図のように, BC=20d の三角形ABCがある。 辺 となるように2点D,Eを 垂線を引き、 その交点を 長方形 DFGE の面積が2 の長さを求めよ。 CHART & SOLUTIO 文章題の解法 ① 等しい関係の式で ②解が問題の条件に FG=x として, 長方形 DF xの2次方程式を解く。 最 忘れずに確認する。 ={-(m+1)}-(m-2)(m+3)=m+7 2次方程式が実数解をもつための条件は D≧0 であるから 26′型であるから、解答 D = b²² 4 =b2-ac を称 FG=x とすると,0<F m+7≥0 0<x<20 よって m≥-7 ゆえに -7≦m<2,2<m m≠2かつm≧ また, DF=BF = CG (2) [1] m+1=0 すなわち m = -1 のとき -4x-7=0 2DF=BC-FG -7 よって、ただ1つの実数解 x=- 7 をもつ。 よって DF= 20-x 2 4 m=-1 [2] m≠-1 のとき よって 方程式は2次方程式で, 判別式をDとすると 2次方程式がただ1つの実数解をもつための条件は D=lであるから これを解いて m=-2,3 -m²+m+6=0 (m+2)(m-3)=0 これらは mキー1 を満たす。 以上から、求めるの値は m=-2,-1, 3 E-S を代入 長方形 DFGE の面積は ←判別式が使えるのは 20-x ゆえに x= 22=(m-12-(m+1)(2m-5)=-m²+m+6 2次方程式のとき。 ← 2次方程式が重 つ場合である。 整理すると これを解いて x²- x= ここで, 02√158 10-8<10-2 よって、この解はい したがって FG=

解決済み 回答数: 1
数学 高校生

この問題ですが、どうして私の解き方(写真2枚目)ではダメなんでしょうか。共通解をx=αでおく意味がわかりません。

3章 12次方程式 00 重要 例題 102 2次方程式の共通解 0000 2つの2次方程式2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数kの値を定め,その共通解を求めよ。 基本97 2つの方程式に共通 な解の問題であるから,一方の方程式の解を求めることができ たら,その解を他方に代入することによって、 定数の値を求めることができる。しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では,次の解法 が一般的である。 要 122 指針 解く。 つのは、 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると ①, a2+α+k=0 ② 2a2+ka+4=0 これをαkについての連立方程式とみて解く。 ②から導かれる k=-α-α を ①に代入 (kを消去) してもよいが,3次方程式と なって数学Ⅰの範囲では解けない。 この問題では, 最高次の項である2の項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 HART 方程式の共通解 共通解を x=α とおく 共通解を x=αとおいて, 方程式にそれぞれ代入すると 2a2+ka+4=0 ①-②×2 から を解く 解答 ①(笑 a2+α+=0 ...... ② (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 よって k=2 または α=2 [1] k=2のとき 171 ずに から ! 0 を除い 34 うな定数k をもつよ α² の項を消去。この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 2つの方程式はともにx'+x+2=0 となり, この方程式 数学Ⅰの範囲では、 の判別式をDとすると D=12-4・1・2=-7 D< 0 であるから,この方程式は実数解をもたない。 ゆえに2つの方程式は共通の実数解をもたない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x26x+4=0, x2+x-6=0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 よって、2つの方程式はただ1つの共通の実数解 x=2 以上から k=-6, 共通解はx=2 x²+x+2=0の解を求め ることはできない。 ( < α=2を①に代入しても よい。[] 注意 上の解答では,共通解 x=α をもつと仮定してαやkの値を求めているから, 求めた値に対して, 実際に共通解をもつか, または問題の条件を満たすかど うかを確認しなければならない。 練習 2つの2次方程式x'+6x+12k-24=0, x2+(k+3)x+12=0がただ1つの実数を 9102 共通解としてもつとき,実数の定数の値はであり,そのときの共通解は である。 p.173 EX73、

解決済み 回答数: 1
数学 高校生

285の問題で、赤線を引いた場所について。 kの係数に-がつく時とつかない時の場合分けがよく分かりません。 方程式ax+by=cの整数解の1つをx=p,y=qとすると、すべての整数解はx=bk+p,y=-ak+q となっています。 なので、例えば(1)ならyの方が-5k... 続きを読む

・数学A よって, 7a-176=1より 90.7-37.17=1 両辺に4を掛けると 90(4.7)-37· (417)==4 すなわち 90・28-37.68=4 よって、 求める整数x, yの組の1つは 285 (1) x=28, y=68 5x+7y=1 ① x=3,y=-2は、①の整数解の1つである。 よって 5.3+7(-2)=1 ①-② から 5(x-3)+7(y+2)=0 ② 5と7は互いに素であるから, ③ のすべての整 数解は x-3=7ky+2=-5k (kは整数) したがって, ① のすべての整数解は x=7k+3,y=-5k-2 (kは整数) [参考] x=p, y=gを1つの整数解に選ぶとき、 x=7k+p,y=-5k+g (kは整数) がすべての整数解となる。 (2) 7x-2y=1 したがって, ① x=8k+3, 参考 1 19と8に 19=8.2+3 8=3.2+2 3=2・1+1 よって 1= = = したがって, 1 x=3,y=7で 参考 219, 計算から 3=19-8.2よ 2=8-3・2よ 13-2.1 よ ① よって, 3a- x=1,y=3は、①の整数解の1つである。 7.1-2・3=1 よって ①② から 7(x-1)-2(y-3)=0 7と2は互いに素であるから, ③のすべての整 数解は x-1=2k, y-37k (kは整数) したがって、 ① のすべての整数解は x=2k+1,y=7k+3 (kは整数) [参考] x=p,y=gを1つの整数解に選ぶとき, x=2k+p, y=7k+g (kは整数) したがって, x=3,y=7 286 (1) 19 x=4, y=- つである。 よって 両辺に がすべての整数解となる。 (3) 13x+5y=1 ① ② から ① x=2, y=-5は、 ① の整数解の1つである。 よって 13.2+5.(-5)=1 ①-② から 13(x-2)+5(y+5)= 0 13と5は互いに素であるから, ③ のすべての整 数は 30 と 17 は 整数解は x-8= したがって x=17 [参考] 130 と

未解決 回答数: 2