学年

教科

質問の種類

数学 高校生

黄色チャートの例題103です。 マーカー引いた部分がなんのために書いてあるのかわからないです。 解答よろしくお願いします🙏🙇‍♀️💦

158 重要 例題 103 2直線 tが実数の値をとって変わるとき, 2直線l:tx-y=t, m:x+ty=2t+1 の交点P(x, y) はどのような図形になるか。その別 を求めて図示せよ。 名城大 CHART P(x,y) の軌跡 つなぎの文字を消去して, x, SOLUTION tx-y=t...... x+ty=2t+1 ······ .... ①, ② からtを消去すれば, 交点Pの軌跡の方程式が得られる。 ・・・・・・ 2直線 4. m の交点Pの座標(x,y)は①と②をともに満たす。 解答 l: tx-y=t [1] x1 のとき 図 ③ から t=- なお, ① ② が表さない直線があるから, 求めた図形から除外する点が出て ことに注意する。 ・①, m:x+ty=2t+1 t(x-1)=y t(y-2)=1-x [2]x=1のとき ③から ****** ...... ④に代入して COMER だけの関係式を導く ・② とする。 4 + m) = A - ³(²-) =(58 y=0 x=1, y = 0 を ④ に代入して t=0 よって,点 (10) 2直線の交点で ある。 以上から, 求める図形の方程式は 円 (x-1)^2+(y-1)^=1 ただし,点 1,2)を除く。 また,交点Pの描く図形は右の図の ようになる。 ・② とする。 inf. 図形的に考え 0=1÷ある。(解答編 照) srion x-1 両辺に x-1 を掛けて整理すると (x-1)+(y-1)^=1・ ⑤ においてx=1 とすると y=0, 2 ゆえに, x=1のとき, 点Pは円 ⑤から2点 (1,0), (1, 2) 除いた図形上にある。 MAPO y(y−2) *1 sk YA 2 0 ゆえに、 =1-x EXERCISES x A 84② 2 定点 (5,C 曲線 x2+y^ ①が表さないのは 直線 x=1 ②が表さないのは 直線y=2 よって除外する点 (12) である。 PRACTICE・・・ 103④ xy平面において,直線l:x+t(y-3)=0, m:tx-(y+3)=0 を考える。 tが実数全体を動くとき、直線ℓとmの交点はどの 85③ 関数f(x)= (1) 放物線 (2) 0<as (3) (2) 86③ 方程式x (1) 定数 (2) B 87③ 座標平面 x軸に指 88④ xy平面 (1) C よ。 (2) (1) 89⑨ (1) た (A) 90⑤ 座標 満フ (1) (2) HNT 87 8 8

解決済み 回答数: 1
数学 高校生

赤線を引いた部分、 軌跡の方程式に値を好きなように追加しても取る軌跡のグラフは変わらないのはどうしてですか?

どの 79. ると 基本例題 42円の接線のベクトル方程式 ((1) 中心C(c), 半径rの円C上の点P (po) における円の接線のベクトル方程 式は(po-cp-c) = であることを示せ。 (2) 円x2+ye=re (r>0) 上の点 (xo,yo) における接線の方程式は xo.x+yoy=ra であることを, ベクトルを用いて証明せよ。 (1) 円 C の接線ℓ は、 接点Pを通り, 半径 CP に垂直 すなわち, CP は接線の法線ベクトルである。 このことから直線のベクトル方 程式を求め、与えられた形に式を変形する。 (2) 中心が原点O(0), 半径が の円上の点P() における接線のベクトル方程式は、 r (1) において=0 とおくと得られる。 それを成分で表す。 【CHART 円の接線 半径 接線 に注目 月 (1) 中心 C, 半径rの円の接線 上に点P(D) があることは, CPPPまたはPP=0が 成り立つことと同値である。 よって,接線のベクトル方程 式は CP-(b-Do)=0 CP=po-c であるから (Po-C) •{(p—c) — (p—c)}=0 したがって Po-c)-p-c)-po-c²²=0 Po(Po) pop=xox+yoy これを②に代入して, 接線の方程式は xox+yoy=x2 PO C(C) ID=CP2=2であるから (Po-c).(p-c)=r² (2) 中心が原点O(0), 半径rの円上の点P(Do) における 接線のベクトル方程式は、 ① において, c=0とおくと 得られるから Dop=r2 Do = (xo,yo), D= (x,y) とおくと 基本 35 (xo-a)(x-a)+(y₁−b)(y—b)=r² であることを, ベクトルを用いて証明せよ。 点A(7) を通り, ベクト ルに垂直な直線のベ クトル方程式は n·(p-a)=0 晶検討 (1) PCP=8 =CP CP 427 (0°≦<90°) とおくと (2)・(お一 ⑦42 練習円(x-a)^2+(y-b)=²(x>0) 上の点 (xo,yo) における接線の方程式は =CPxCP cost =rXy=" (FP, i CP であるから) \CP cost=CPo=r 1 章 ⑤ ベクトル方程式

未解決 回答数: 1