数学
高校生

赤線を引いた部分、

軌跡の方程式に値を好きなように追加しても取る軌跡のグラフは変わらないのはどうしてですか?

どの 79. ると 基本例題 42円の接線のベクトル方程式 ((1) 中心C(c), 半径rの円C上の点P (po) における円の接線のベクトル方程 式は(po-cp-c) = であることを示せ。 (2) 円x2+ye=re (r>0) 上の点 (xo,yo) における接線の方程式は xo.x+yoy=ra であることを, ベクトルを用いて証明せよ。 (1) 円 C の接線ℓ は、 接点Pを通り, 半径 CP に垂直 すなわち, CP は接線の法線ベクトルである。 このことから直線のベクトル方 程式を求め、与えられた形に式を変形する。 (2) 中心が原点O(0), 半径が の円上の点P() における接線のベクトル方程式は、 r (1) において=0 とおくと得られる。 それを成分で表す。 【CHART 円の接線 半径 接線 に注目 月 (1) 中心 C, 半径rの円の接線 上に点P(D) があることは, CPPPまたはPP=0が 成り立つことと同値である。 よって,接線のベクトル方程 式は CP-(b-Do)=0 CP=po-c であるから (Po-C) •{(p—c) — (p—c)}=0 したがって Po-c)-p-c)-po-c²²=0 Po(Po) pop=xox+yoy これを②に代入して, 接線の方程式は xox+yoy=x2 PO C(C) ID=CP2=2であるから (Po-c).(p-c)=r² (2) 中心が原点O(0), 半径rの円上の点P(Do) における 接線のベクトル方程式は、 ① において, c=0とおくと 得られるから Dop=r2 Do = (xo,yo), D= (x,y) とおくと 基本 35 (xo-a)(x-a)+(y₁−b)(y—b)=r² であることを, ベクトルを用いて証明せよ。 点A(7) を通り, ベクト ルに垂直な直線のベ クトル方程式は n·(p-a)=0 晶検討 (1) PCP=8 =CP CP 427 (0°≦<90°) とおくと (2)・(お一 ⑦42 練習円(x-a)^2+(y-b)=²(x>0) 上の点 (xo,yo) における接線の方程式は =CPxCP cost =rXy=" (FP, i CP であるから) \CP cost=CPo=r 1 章 ⑤ ベクトル方程式

回答

疑問は解決しましたか?