学年

教科

質問の種類

物理 高校生

(3)答えは2なのですが、どうしてこの形になるのか教えてください。回答はごちゃごちゃしててよくわかりません

241 242 243 例題 50 波の干渉 20cm離れた2つの波源 S, S2 から, 振幅 3cm, 波長10cm の2つの波 相で出ている。波源から離れても波は減衰しないものとして考えよ。 (1) S1 から 25 cm, S2 から15cm の点Pに おける振動の振幅は, S, だけを振動させ る場合の何倍になるか。 (2) S1,S2 を結ぶ線分上で, 節になるところ はいくつできるか。 (3) 水面が上下に振動しない点をつないだ線 を表す図として最も適当なものを、次の① ~④のうちから1つ選べ。 (1) > > ST S1 • ●センサー 70 2つの波源が同位相で振動 するとき, 両波源からの距 離の差が, 入 2 ×偶数倍・・・強め合う 現在の船の船首 入 - ×奇数倍・・・弱め合う 2 2つの波源が逆位相で振動 する場合は, 「強め合う」 「弱め合う」 が入れかわる。 ●センサー 71 波源を結ぶ線分上には定在 波ができる。その中点は. •S2 (4) S1,S2 から波が逆位相で出ている場合, St, S2 を結ぶ線分上で腹になるとこ はいくつできるか。 Sı 2.5cm <x S₁0- (3) Sis 5cm S1 25 cm 手順1 2001 ■解答 (1) SP-S2P|=|25-15|= 10[cm] 2つの波源からの距離の差が,半波長(5cm) の2倍( であるから、点Pは強め合って腹となる。よって、 液が1つだけの場合の2倍となる。 20cm (2) S1,S2を結ぶ線分上の中点 M では, |S,M-S2M|=|10-10| = 0 2つの波源からの距離の差が、半波長の偶数倍(①倍)で から強め合って腹となる。 21/0 2.5cm 2.5cm xxx M S₁ 5 cm 2.5cm 線分 S, S2 上にできる定在波の腹や節の位置は次の手順 める。 -o S2 と球 波を波 ると ると と

回答募集中 回答数: 0
物理 高校生

問3で、解答のマーカー部がわかりません。よろしくお願いします。

次に、図1の振動板を取り除き, ついたての隙間をふさぐ。 そして, ついたて から20cm離れた点 A の位置で水面に浮かべた小球を振動数 5.0 Hz で上下に振 動させると,点Aから波長10cmの円形波の水面波が発生した。 十分に時間が 経過すると,水面上には、ついたてに入射する波とついたてで反射した波が弱め 合う点を連ねた曲線が現れた。 図3中の実線(-) と破線 (-----) は,点Aを 中心に広がる波の、ある瞬間の隣り合う山と谷の波面をそれぞれ表している。た だし、波がついたてで反射する際に波の振幅および位相は変わらないものとする。 また、水面で発生した波は正弦波と考えてよいものとし、水槽内での波の減衰や 水槽の壁面での反射は無視して考えるものとする。 水面波 ① 1 ⑤ 5 ------ 2 ------ 66 ついたて 図 3 B 10 問3 ついたてに垂直で点Aを通る直線がついたてと交わる点をBとし (図 3), 水面上に波が弱め合う点を連ねた曲線が現れているときを考える。 点Aと 点Bの間を通る弱め合う点を連ねた曲線の本数として最も適当なものを 次の①~⑧のうちから一つ選べ。 ただし、 弱め合う点を連ねた曲線が点A または点Bを通る場合には,それらの曲線は除いて考えるものとする。 17 本 20cm n ③3 Ⓒ7 15 44

回答募集中 回答数: 0
物理 高校生

⑵の解説のなぜP1とP2 が図のように振動するのかがわかりません。教えてください

-40 -43 0.98~101 EN (開 r [解説] √=fR V 考察 B5⑤ 158 (1) 考察A: 3③ 考察 C⑧ (2) 4 (3) 3 注目する。 指針 初めて見る実験題材は,発生する現象を問題文から読み取るこ とが重要。 この問題は共鳴の問題であるから,定在波の腹節の位置に 1000≧ 73346 1000 (2) 観察・実験Ⅰ・Ⅱより,パイプ おんさ P1,P2 から発生する音波 の振動数はいずれも1000 Hz 以下 であるから、その波長は 0.34m 340 以上である。 したがって, P1, P2 入 270.34 (1) 考察 A: パイプおんさ P1, P2 を同時に鳴らせたとき, 1 パイプおんさ Pi. P2はU 秒間のうなりの回数は1回未満であったことは, 字型の加工部分が共通して P1, P2 の振動数の差が1Hz 未満であることを示いるため, 発注する音波の している。 よって ③ 振動数は一致している。 Pi 考察 B: パイプおんさ Pi の下端(開口部)を手でふさい で閉管にしたとき共鳴音が大きくなったことは, 下端(開口部) 付近が定在波の節の位置であること を示している。 よって, ⑤ 考察 C : パイプおんさP2 の下端(開口部) を手でふさい で閉管にしたとき,共鳴音が小さくなったことは、 下端(開口部) 付近が定在波の腹の位置であること を示している。よって, ⑧ 3 の長さの差16cmの間に一波長 4 2.30** 23cm 251 P1 P2 WALIT 158) センサー44 センサー 45 16 cm 開口端補正 が含まれている可能性はないので、 気柱内に生じる定在波は図のよう になる。 開口端補正を1.0cm 程 度と仮定しているので,発生する 音波の波長は -x3=16 入 = (16+1.0)×4=68[cm]=0.68〔m〕 7:16/1/u=faより P1 のおおよその振動数は, 340 21.3cm [f= +=500[Hz] ④ 0.68 70,21m (3) 下端(開口部)を手でふさいだときに音量が大きくなる位置 (3) 20.4は、定在波の節の位置である。その位置はパイプおんさ P1 をみたしていたより=波長(34 cm)程度長い位置である。よって,③ 39cm (音波変位で 表している) ^ 4 p が節だと ちゃんと共鳴して 音大きくなる 16cm+1g 1.7-4 0.0 0.8 23cml 134c 各8cm t = (C sirve (2)より 7=6 132

回答募集中 回答数: 0
物理 高校生

⑶の解説に[半波長ののm倍が円周の長さ0.25πに等しい]と書いてあるのですがなぜそうなるか教えてください

応力を磨く 解答編p.8 156 実験結果の解説を理解して考察するアウタイ ( 励振器 (バイブレーター) にループピアノ線 (直径25cm) を取りつけて振動させると ループピアノ線に沿って時計回りと反時計回りの振動が伝わり, 励振器の振動数を調整 すると円周上に定在波が生じる (図1)。 この定在波の発生について,以下の問いに答え よ。 0 第Ⅲ部 波 図1 ループピアノ線に生じた定在波 ( 腹の数が6個の定在波) [U ...... 0900 00000 ·m m 0 0 V V f(Hz) 150 100 (1) ループピアノ線に腹の数が6個の定在波が生じているとき, 励振器の振動数は 90 Hz であった。 ピアノ線を伝わる波の速さを求め, 円周率πを用いて答えよ。 (2) 直線に張った弦をはじくと張力によって振動するが,ループピアノ線は曲げによる 変形に対する応力によって振動する。 このため, ループピアノ線の振動は腹の数と振 動数が比例関係を示さず, 振動数fは腹の数の2乗にほぼ比例することが知られ ている (図2)。腹の数が2個 8個のときの振動数をそれぞれ推定せよ。 (3) 励振器の振動がループピアノ線を伝わるときの波の速さ”と腹の数の関係とし て,最も適切なグラフを下記の①~⑥から選び番号で答えよ。 1 50 0 (5) 腹の数mと振動数の関係 0 2 8 腹の数m[個] 図2 ループピアノ線の定在波の腹の数と 振動数fの関係 m 4 +m 6 0円 V m 221 HA

回答募集中 回答数: 0