学年

教科

質問の種類

数学 高校生

31と32の解き方の違いを教えて下さい🙇‍♀️

基本20 重 62 基本 例題31 2つの無限等比級数の和 ①① 無限級数 (1-1/2)+(1/2-2/21)+(1/3/3-2/17)+ +...... の和を求めよ。 p.54 基本事項 CHART & SOLUTION 無限級数 まず部分和 Sm nom この数列の各項は()でくくられた部分である。 部分和 Sm は有限であるから,頃の順序 を変えて和を求めてよい。 [注意] 無限の場合は、無条件で項の順序を変えてはいけない (重要例題 32 参照)。 別解 無限級数 Σan, 20m がともに収束するとき n=1 n=1 (a+b)=an+26m が成り立つことを利用。 n=1 n=1 n=1 解答 初項から第n項までの部分和を Sn とすると Sn=(1+1/+1/28++g/1)-(12/2+2/23+ ......+ 1-(1/1)/1-(1/2)"} +...+ 2n 2/2/2) Sは有限個の和であ から、左のように 変えて計算しても 3 1 1 1- 1 3 20 3 lim Sn 1-2 n→∞ 別解 n=1 00 S=1221-1-1/2 であるから,求める和は (1-1/2)+(1/3-2/2)+(3/2-2/23)+ 00 n=1 1 3n-1 2n 1 は初項 1. 公比 1/3の無限等比級数であり、 3n- 2/1/17は初項 1/12公比 1/12 の無限等比級数である。 <1 公について/12/1 であるから,これらの無 限級数はともに収束して, それぞれの和は -0+0= ( n→∞のとき 0, [inf.] 無限等比級数の収束 α=0 または |r|<] このときは 1- ◆収束を確認する 8 1 1 3 00 = 2 3n-1 n=13 = 1 2' 1 n=1 2n =1 3 1- 2 00 よって 1 3 2n-1 n=1 2" -1= PRACTICE 31° 次の無限級数の和を求めよ。 (1)(1+1/+1/+1)+(1/+1)+ 23 +... 32 33 2 (2) 33-2, 3-2 3-2

解決済み 回答数: 1
物理 高校生

F1🟰F2‥🟰F5🟰19.6までは分かるのですが、その次の20Nからがよくわかりません 解説お願いします

□ 63. ばねの直列接続図のように, 軽いばねAと軽い ばねBを直列に接続し, 質量 2.0kgのおもりをつるして静止 させた。 ばねA, B のばね定数をそれぞれ 98N/m, 196N/m とし,重力加速度の大きさを 9.8m/s2 とする。 次の各問に答 えよ。 A Fz' (1) AがBから受ける力の大きさは何Nか。 また,BがA から受ける力の大きさは何Nか。 おもり 2.0×9.8=19.6 T. 19. zo 620 B FS 02.0kg 119.6 63. ばねの直列接続 解答 (1) Aが受ける力 : 20N, Bが受ける力:20N (2) A:0.20m, B:0.10m 指針 (1) おもりに加えて, ばね A, B が受ける力 に着目すると,それぞれが受ける力はつりあっている。 また,作用・反作用の法則から, AとBが互いにおよ ぼしあう力の大きさは等しい。 (2) A, B のばねの伸 びを x1 〔m〕, x2 〔m〕 とし, フックの法則を用いて式を 立てる。 糸から 受 7 Bが受 式②カ m 解説 (1) Aは,天井か ら上向きに力F1, Bから 下向きに弾性力 F2 を受け, Bは, A から上向きに弾性 力F3, おもりから下向き に力F を受ける。 また、 おもりは, 下向きに重力 2.0×9.8=19.6NBから上 Fi F3 トレー F5 65.1 A B 解答 19.6N (3)x 指針 FA の長さ 成分を 向きに弾性力Fを受ける。 各物体が受ける力はつ りあっているので, 解説 を F-F2=0 F3-F4=0 F5-19.6=0 【x また,AとBが互いにおよぼしあう力 F2, F3, B と おもりが互いにおよぼしあう力F4, F's は, それぞ れ作用・反作用の関係にあるので, 【y】 F2=F3 Fa=Fs (2) したがって, る。 F=F2=Fg=F=Fs=19.6 20 N 【月 すなわち, AがBから受ける力 (F2) は20N,Bが Aから受ける力 (F3) は20Nとなる。

解決済み 回答数: 1