学年

教科

質問の種類

数学 高校生

(2)を解き、答えもあっていましたが、私の答案の書き方で直した方がいいところを教えてください。

4 サイコロ型・ (1) 2個のさいころを同時に投げるとき, (i) 目の数の差が2である確率はいくらか. (ii) 目の数の積が12である確率はいくらか. (2)3個のさいころを同時に投げるとき,あるさいころの目の数が残りの2つのさいころの目の 数の和に等しい確率はいくらか. ( 椙山女学園大) 1 2 3 4 5 6 O O O さいころは区別する 目はさいころ1つにつき6個あるから, 2個投げ た場合,目の出方は36(=62) 通りあってこれらは同様に確からしいさい ころ2個であれば右のような表を書いて条件を満たすところに印をつける (図は目の数の和が6の場合で確率は5/36) という解法も実戦的と言える. さて,右表で「1と2の目が出る」 は2か所にあるが,これは 「区別できる さいころに1と2の目を割り当てるとき, 割り当て方は2通りある」 という 5 O ことである. ゾロ目は割り当て方が1通りなので表でも1か所ずつである. 6 12345 10 まず目の組合せを調べる さいころが3個以上のときは,表を書いて解くのは大変である. 上で述 べたように,まず目の組合せを調べ, 次にどの目をどのさいころに割り当てるかを考える. ③ (a,b,c)の関係性の国立 (サイコロ) 解答 ①サイコロ ②出に目一列に並べる→口 サイプわりわてるふり (1) 2個のさいころを区別し, A, B とすると, 目の出方は62=36通りあり, 表を使って解いてもよい。 これらは同様に確からしい. (i) 目の組合せは {3, 1}, {4, 2}, {5, 3}, {6, 4}の4通りで,どちらがAでAが3, Bが1とAが1. Bが あるかで各2通り。 よって出方は4×2=8通り. 求める確率は 8 2 36 9 など2つの目が異なるので割り 当て方は2通りずつ(Ⅱ)も同 様 (17 (i) 目の組合せは {2,6}, {3,4} だから, (i) と同様に目の出方は 4 1 2×2=4通り. よって確率は = 36 9 (2) さいころを区別すると, 目の出方は 63=216通りある. ←同様に確からしい. 3つの目を a, b, c として, a=b+c を満たす(a,b,c) [ただしbsc] を調 ここは3つの目の組合せ. べると, (2, 1, 1), (3, 1, 2), (4, 1, 3), (4, 2, 2), wwwwwwww wwwwwww (5, 1, 4), (5, 2, 3), (6, 1, 5), (6, 2, 4), (6, 3, 3) wwwwww ←αが小さい順, αが同じならが 小さい順. 目の割り当て方は,が各3通り,それ以外は各3!=6通りあるから,216 ~ は,異なる目をどのさいこ 通りのうち、条件を満たすような目の出方は ろに割り当てるかで3通り. 3×3+6×6=45 (通り) ある. 全ては等確率では出 45 5 ません!! 従って、求める確率は 216 24 4 演習題 (解答は p.47) 1から6までの目をもつ立方体のサイコロを3回投げる。 そして 1,2,3回目に出た目 をそれぞれ a, b, c とする. (1) a, b, c を3辺の長さとする正三角形が作れる確率を求めよ. (2)/α,b,cを3辺の長さとする二等辺三角形が作れる確率を求めよ。 (3) a, b, c を3辺の長さとする三角形が作れる確率を求めよ. (滋賀医大) まず a b c の組合せを 列挙する. 何かが小さい 順など, 系統的に数えよ う. (1) (2) 以外は3辺 の長さが相異なる. 37

回答募集中 回答数: 0
数学 高校生

これの(2)の解き方の考え方を教えて欲しいです。

C1-40 (226) 第3章 平面上の Think 題 C1.22 ベクトルと軌跡 平面上に△ABC があり, 実数kに対し、 12p=46+5c-kc-b) 3PA +4PB+5PC=kBC を満たして動く点Pがある。このとき,次の問いに答えよ. (1) kがすべての実数値をとって変化するとき, 点Pの描く図形を図示 せよ. (2)△PAB, △PBCの面積をそれぞれ, S, S2 とするとき S:S2=1:2 となるようなkの値を求めよ. 考え方 (1) 点Aを基点として,AB=AC=CAP= とおいて与式に代入し、 の形に変形するは,を通りに平行な直線) 解答 wwwwwwwww (2) △ABCの面積をSとし,まずは S, S2 をそれぞれSで表す。 (1)点Aを基点とし,AB=1, AC=C, AP= とおく. 3PA+4PB+5PC=kBC より 3(-)+4(-)+5c-p)=k(c-b) AP: AQ=3:4 ...... ② より 4 41 38' 3 ベクトルと図形 (227) C1-41 **** であるから,S:S2=12 のとき, ST -S 80 △ABQの面積を S3 とすると, もう片方を特定 したがって, BQBC=1:6 ...... ③ 次に, ①を変形すると, △ABC: △ABQ =BC: BQ 0 んを含まない部分 12 46+5cc-6) ......1 (動かない) と, kを含 12 む部分(動く)に分け 49 3.46+52 (-b) る. -5-(-6)=5¬BC 9 12 9 10 A AP= (4+k)+(5-k)c 12 であり,②より ATH 0 AQ=1/AP=12(4+k)+(5-k)c 3 (4+k)b+(5-k)c よって, 交点の付 9 BQ=AQ-AB 12 (4+k)b+(5-k)c 一言 上の点である. 9 より,Qは直線 BC 点PがABCの内部 の場合と外部の場合が ある. 45246 第3章 4+k 5-k_9 1 9 9 9 RA 12 3-4 A 線分 BC を 54 に内分する点を D, 線分AD を だからBQBC-156k1 ORO 9 3:1 に内分する点をEとすると, wwwwwwwww A ADBC-AEBC 002+111.015-k=1 6 GO+AO-1 FP G wwww よって,点Pは点E を通り辺BC に平行な直線上 にある. RIA 3 5-k=± Q E 6 + P 11 その直線と辺 AB, AC の交点を F, Gとすると, AF: FB=AG: GCA B 5-D--4-C よって、 k = 1/12 1/27 7 13 2' =AE ED =3:1 であるから,点Pの描く図形 は、 右の図の直線 FG である. F P B PF G Q1B C kがすべての実数値を とるので,直線 FG と なる. 注》頂点Bを基点とし、BA=BC=BP=_ とすると 3PA+4PB+5PC-kBC 1, 3(a-p)+4(-p)+5(c-p)=kc となる. 5-k P この式を整理すると, 12 よって、点Pは,辺AB を 3:1に内分する点 F を通り直線 BC に平行な直線上を動く. B C 練習 01.22 ABCがあり実数kに対して、点PがPA+2P+3PC=kAB を満たすも B1 B2 ADDを求めよ C1 (2)直線APと直線BCの交点をQ とすると, FG/BC より AQ:PQ=AB:FB=4:1 したがって,△ABCの面積をSとすると,点Pが どこにあっても,△PBC の面積 2 は一定で, S= s

回答募集中 回答数: 0
物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
物理 高校生

この問題の(1)で、圧力の釣り合いが理解できません😭力の矢印を書いた図を用いて教えて下さると嬉しいです🙇‍♀️

図のような,滑らかに動くピストンのついた断面積Sの容器 がある.容器はピストンを含め断熱壁でできている.容器の底 から,高さαのところに止め具Aがあり,ピストンがこれ以下 に下がらないようになっている.容器内に大気圧と等しい圧力 po, 絶対温度 To の単原子分子の理想気体が入れてある (この状 態を0とする). po 水 Po, To www C |B Ab 玉泉 止め具 Aから高さんの所にあるコックの付いた穴Bから水を コックの高さまで注ぎ, コックを閉める。 次に, 組み込んであ るヒーターから気体に熱をゆっくり加え、容器の上端℃までピストンで動かす. 穴Bから容 器の上端 Cまでの高さをcとする. 水の表面が容器の上端Cに達した後は、水は容器の外に あふれ出る. ピストンの質量および厚さを無視し、重力加速度の大きさをg 水の密度をと して、次の問いに答えよ. 解答は上に与えられた記号 a, b, c, S, Po, To, p, g のみを用い て表せ. (1)ピストンが動き始めるとき (この状態を1とする)の容器内の気体の圧力 p1, 絶対温度T1 定モル比熱 cy モル比熱 を求めよ. その気体の絶対温度と ピストンが

回答募集中 回答数: 0
英語 高校生

教えて欲しいです。単元は動詞の語法です

1. When I realized I was wrong, I apologized ( Dhim my mistake 3 to him my mistake him for my mistake to him for my mistake 2. I graduated ( ) high school in 2015.m 1 from duo@for 3. We ( ) the problem of poverty. ①discussed 3 discussed of インター bist 4. Do you think I ( ) my elder sister? Dresemble resemble with (立正大) 4 of ③at de (酪農学園大) discussed about the discussed with して楽しめる b biabidea (東洋大) 3 resemble for b①am resembling 5. Kate () her baby boy on the bed after dinner. bid oa ed or blu ①laid lain give/tal 3lay 9131 (京都産業大) lie blow- em evig bnim LOV (広島修道大) ①raise ②rise wwo no alim to no 6. Please ( ) your hand if you want to ask a question. to baim w prey set up hard ratake up Sunda tegral 'nob 98819 7. Because of the bad weather, I decided ( ) out. ①not to go vud king/from home last night, to not going ③not going ④going not yud o (清泉女子大) guinisque beringsr 8. The repair shop failed ( ) my car. (東北芸術工科大) ①to fix 2 to affix ③fixed ④fix Ieva un baimer) Botong sandT 9. There was a big fire yesterday. Fortunately, everybody managed (). 011 (亜細亜大) Descape escaped Bevig 3 would escape aDob to escape 10. I closed my eyes and pretended ( ) asleep. o be Last wee toob edT 880 of Obe evig(玉川大) being 3 of being to be toy mailliW bus arrotiv 280 (to) during the exam.

回答募集中 回答数: 0
物理 高校生

速度の合成の(4)で、CDを求める所からイマイチ理解出来ないので、誰か噛み砕いて教えて欲しいです

1. 速度の合成 図のように、一定の速さで一様に流れる川に浮かぶ船の運動を考える。 船は、静止している水においては一定の速さ vs (vsv) で進み, また、瞬時に 向きを自由に変えられる。 最初, 船は船着場Aにいる。 Aから流れに平行に 下流に向かって距離L離れた地点をB, A から流れに垂直に距離W 離れた地 点をC, Cから流れに平行に下流に離れた地点をDとする。 船の大きさは無 視できるものとする。 C D 川 WW ひろ 三 A M B L (1)地点AとBを直線的に往復する時間 TB を L, vs, v を用いて表せ。 →正 (2) 船首の向きを, AC を結ぶ直線に対してある一定の角度をなすように上流向きに向け, 流れに垂直に 船が進むようにして,地点AとC を直線的に往復する時間 Tc を W, vs, v を用いて表せ。 (3)L=Wのとき, Tc を TB, vs, v を用いて表せ。 また, 時間 Tc と TBのうち長いほうを答えよ。 (4)船首の向きを, AC を結ぶ直線に対し角度8 (80)だけ上流向きに向けて地点Aから船を進めると 地点Dに直線的に到着する。 その後、地点DからCに、流れに平行に進み, 地点Cに到着する。 地 点AからDを経由し Cまで移動するのに要する時間を W, vs, v, 0を用いて表せ。 分解する [21 東京都立大] (4) Ms. M UsW RUSCOSE MS COS Mssing M Ľ 流されてしまう W=uscostAp AからDの時間 W Ł. CAD=COSO CD = (u-ussingtap mussingi Mscost CD=us-utpe と流されたしかり toc= MSCD の時間 M5-1 u-ussing TtAp+toc こ (1-sin) W (Ms-m) Coso W

回答募集中 回答数: 0