学年

教科

質問の種類

数学 高校生

この辺の根本的な考え方から分かりやすく教えてもらえませんか。むらさき線のところが特に分からないです。Oでかこっているのは全部1ミリも分からないです。

に (1) 5. B 1 1 (1) DE//BCより AE DE D M AC BC 3 2 よって, BC=6(cm) 9 BC XC (2) ∠ABC= ∠ACD 02 2=α×4より,216a y=ax2 のグラフが、 点A(4,2)を通るから、 <BAC= ∠CAD (共通) より, 2組の角がそれぞれ等しいので △ABC∽△ACD よって, AB: AC=AC: AD 6AD=9 6:3=3 3 よって,a= 1/2 である。 AB=OB だから,△OABはAB=OB の二等辺 三角形である。 OA の中点をM (21) とすると, OBMは直 角三角形であるから OB2 = OM2+MB2 B(0, b) とすると, OB2=62 OM2+MB2=22+12+22+(b-1)2 =62-26+10 よって、62=62-26+10 これを解いて.6=5 よって、Bのy座標は5である。 J (2) ∠OBAの二等分線を1とすると, 1 は線分 OA の中点M(2,1) を通る。 よって、この傾きは-2である。 したがって, AD=2 (cm) (3)底面積は, 4×4=16 (cm²) 高さは, 体積は,1/23> -×16×3=16 (cm3) (4) BD=3cm, ∠ADB=90° だから, 三平方の定理より, AB2=32+42=25 AB>0より, AB=AC=5(cm) (5) 弧 BC に対する円周角より ∠BAC = ∠BDC=65° ∠AEB=180°(65°+15°)=100° また,切片が5より1の式は,y=-2x+5である。 (6) 11/113 π33=36 (cm3) πC (3)点Cは,y=1/2x2のグラフ上にあるから, c(t, 1/2)とおける。 2 (1) △ABCとAED において さらに,点Cは1上にもあるから, t=-2t+5 8 これより, =-16t+40 t²+16t-40=0 が成り立つ。 <BAC= ∠EAD (共通) 仮定より ∠ABC=∠AED ①,②より 2組の角がそれぞれ等しい △ABC∽△AED よって AB AE = AC: 6:AE=5:3

回答募集中 回答数: 0
数学 高校生

この辺の根本的な考え方から分かりやすく教えてもらえませんか。むらさき線のところが特に分からないです。Oでかこっているのは全部1ミリも分からないです。

に (1) 5. B 1 1 (1) DE//BCより AE DE D M AC BC 3 2 よって, BC=6(cm) 9 BC XC (2) ∠ABC= ∠ACD 02 2=α×4より,216a y=ax2 のグラフが、 点A(4,2)を通るから、 <BAC= ∠CAD (共通) より, 2組の角がそれぞれ等しいので △ABC∽△ACD よって, AB: AC=AC: AD 6AD=9 6:3=3 3 よって,a= 1/2 である。 AB=OB だから,△OABはAB=OB の二等辺 三角形である。 OA の中点をM (21) とすると, OBMは直 角三角形であるから OB2 = OM2+MB2 B(0, b) とすると, OB2=62 OM2+MB2=22+12+22+(b-1)2 =62-26+10 よって、62=62-26+10 これを解いて.6=5 よって、Bのy座標は5である。 J (2) ∠OBAの二等分線を1とすると, 1 は線分 OA の中点M(2,1) を通る。 よって、この傾きは-2である。 したがって, AD=2 (cm) (3)底面積は, 4×4=16 (cm²) 高さは, 体積は,1/23> -×16×3=16 (cm3) (4) BD=3cm, ∠ADB=90° だから, 三平方の定理より, AB2=32+42=25 AB>0より, AB=AC=5(cm) (5) 弧 BC に対する円周角より ∠BAC = ∠BDC=65° ∠AEB=180°(65°+15°)=100° また,切片が5より1の式は,y=-2x+5である。 (6) 11/113 π33=36 (cm3) πC (3)点Cは,y=1/2x2のグラフ上にあるから, c(t, 1/2)とおける。 2 (1) △ABCとAED において さらに,点Cは1上にもあるから, t=-2t+5 8 これより, =-16t+40 t²+16t-40=0 が成り立つ。 <BAC= ∠EAD (共通) 仮定より ∠ABC=∠AED ①,②より 2組の角がそれぞれ等しい △ABC∽△AED よって AB AE = AC: 6:AE=5:3

回答募集中 回答数: 0
化学 高校生

CODの測定についてなのですが、最初に加えた10mlを考慮して14.7mlで考えると思ったのですがなぜ最初に加えた分は考えていないのか教えて頂きたいです。よろしくお願い致します。

163 <CODの測定〉 ★★★ 4/ 次の文章を読み, あとの各問いに答えよ。 Jm 0.01 Jill th 「化学的酸素要求量 (COD) とは、水中に存在する被酸化性物質, 主として有機物や Fe2+やNOなどを一定の条件で酸化分解するとき,消費される酸化剤の質量を、そ れに相当する酸素 (分子量320) の質量で表したもので、水質汚染の状態を知る1つの 重要な指標とされている。試料A)を P COD の単位は,試料水1Lあたりの酸素消費量(mg)の数値で表される。い X(1) いま 濃度 54.0mg/Lのグルコース(分子量180)の水溶液を試料水とする。 グル コースが完全に酸化分解されたとして、その化学反応式を示し, CODの理論値を → 計算で求めよ。 41 21 (1) Td T ある河川水200mLに希硫酸を加えて酸性とし, 5.00 × 103mol/L過マンガン酸 カリウム水溶液10.0mLを加えて30分間煮沸し,試料中の有機物を完全に酸化した。 この水溶液には未反応のKMnO が残っているので, 1.25×10mol/Lシュウ酸ナ トリウム水溶液10.0mLを加えて未反応のKMnO を還元した。 この水溶液には未 反応の (COONa) 2 が残っているので, 5.00 × 10mol/LKMnO4 水溶液で滴定した ら4.85mLを要した。 また, 200mLの純水についても同じ方法で滴定(空試験とい (日本女大改) う)をしたら,KMnO 水溶液が0.15mLが消費された。以上より,この試料水の CODの実測値を有効数字3桁で求めよ。 くう

回答募集中 回答数: 0
数学 高校生

この、右のページでやっていることが、なぜ成り立つかわかりません

370 340 第9章 整数の性質 不定方程式 y 次のような方程式を考えてみます. -2231x+409y=1 2231x+409y=1 ...... (*) これを満たす実数x、yの組は無数に存在しま す.実際,この式を 1 409 この直線上すべての 点(x,y) が解となる 1 2231 1 y=-- x+· 2231 409 409 -x と変形すると,これはry 平面上の直線となるの で,この直線上のすべての点(x,y) がこの方程式の解となるわけです. 一般に,文字の数が等号の数より多い方程式は解を定めることができません。 このような方程式のことを不定方程式と呼びます.特に,(*)のようにxy の一次式で表されるような不定方程式を一次不定方程式と呼びます. さて,ここで考えたいのは次のことです. 不定方程式 2231x+409y=1 ......(*) は りがともに整数であるような解(整数解)を持つだろうか? これは意外に難しい問題です。 実数の範囲では無数に解を持ったとしても 整数の範囲では解を持つかどうかすらアヤシイのです. 結論から先に言えば (*)の整数解は存在する のです.では,それをどうやって示せばいいのでしょう. 妖怪が存在すること を示す最もストレートな方法は,妖怪を捕まえて連れてくることです. それと 同じで,整数解の存在を示す一番の方法は、 具体的に整数解を作ってみせるこ とです.ここで役立つのが,先ほど扱ったユークリッドの互除法なのです. (*)のxyの係数 2231 と 409 に注目し, これをユークリッドの互除法の 要領で「割り算」 していきましょう. すると, 3段階目で余りに1が現れます. 2231=409×5+186 ......① 409=186×2+37 186=37×5+1 1が現れた! ...... 2 余りに1が現れたということは, 2つの数の最大公約数は 1 つまり2数は 互いに素であるということです. これはとても重要なポイントなので、頭に入 ておいてください 341 ことは,これらの式を逆にたどるよ にして1を元の2数を用いて表す」 ことです。 具体的には,次のような作 になります。 ⑦→ ④→ ← 1=186-37 × 5 ③ より =409×(-5)+186 × 11 186-409-186×2)×5②より37=409-186×2 =409×(-5)+(2231-409×5)×11-0) =2231×11+409 × (-60) - 186-231-409×5 まず、③により1が 「186と37」 を用いて表され(ア), そこに②を使うと 「409 と 186」 を用いて表され(イ), さらに①を使うと1が 「2231409 」 を用いて表されます(ウ) ウの式は,まさに(*)の整数解 (の1つ)が であることを教えてくれます。 x=11,y=-60 さて、先ほど注意したように,このようなことができたのは, そもそも の係数 2231 409 の最大公約数が 1 つまり互いに素であったからです。 つまり、一般に次のことが成り立つことがわかるのです. 不定方程式の整数解 bが互いに素な整数であるとき 1次不定方程式 ax+by=1 は整数解を持つ ユークリッドの互除法を用いれば, 一次不定方程式の整数解を具体的に作り 出すことができます.ただし,このやり方で見つかる整数解は、あくまで不定 方程式の整数解 「の1つ」であり,それがすべての解であるわけでも、あるい は最もシンプルな解であるわけでもないことには注意してください。 当然次なる興味は,1次不定方程式の「すべての整数解」を求めることは きないかということになります.この「すべての整数解」のことを次 定方程式の一般解といいます。その求め方は後ほど詳しく説明しますが、実 「すべての」 整数解を求めるためには, 少なくとも「1つの」 整数解を自 求めなければなりません.そこで,まずは先ほどの作業で「1つの」整数 求める練習をしっかりとしておきましょう。

回答募集中 回答数: 0
現代文 高校生

2枚目P22ページの例えば、から何言ってるのかわかりません。 現代文得意な方詳しく説明願います

がした 可能 いわ * いや生全体に 二〇一七年度 第 次の文章を読んで、後の設問に答えよ。 与えられた困難を人間の力で解決しようとして営まれるテクノロジーには、問題を自ら作り出し、それをまた新たな技術の開発 によって解決しようとするというかたちで自己展開していく傾向が、本質的に宿っているように私には思われる。 科学技術によっ て産み落とされた環境破壊が、 それを取り戻すために、新たな技術を要請するといった事例は、およそ枚挙にいとまないし、感染 防止のためのワクチンに対してウィルスがタイセイを備えるようになり、新たな開発を強いられるといったことは、毎冬のよう に耳にする話である。東日本大震災の直後稼働を停止した浜岡原発に対して、中部電力が海抜二二メートルの防波堤を築くことに よって、「安全審査」を受けようとしているというニュースに接したときも、同じ思いがリフレインするとともに、こうした展開に はたして終わりがあるのだろうかという気がした。 技術開発の展開が無限に続くとは、たしかにいい切れない。 次のステージにな にが起こるのか、当の専門家自身が予測不可能なのだから、先のことは誰にも見えないというべきだろう。けれども科学技術の展 開には、人間の営みでありながら、有無をいわせず人間をどこまでも牽引していく不気味なところがある。いったいそれはなんで あり、世界と人間とのどういった関係に由来するのだろうか。 けんいん 医療技術の発展は、たとえば不妊という状態を、技術的克服の課題とみなし、人工受精という技術を開発してきた。その一つ体 外授精の場合、受精卵着床の確率を上げるために、排卵誘発剤を用い複数の卵子を採取し受精させたうえで子宮内に戻す、といっ たことが行なわれてきたが、これによって多胎妊娠の可能性も高くなった。 多胎妊娠は、母胎へのフィジカルな影響や出産後の経 済的なことなど、さまざまな負担を患者に強いるため、現在は子宮内に戻す受精卵の数を制限するようになっている。だが、この 制限によっても多胎の「リスク」は、自然妊娠の二倍と、なお完全にコントロールできたわけではないし、複数の受精卵からの選択、 また選択されなかった「もの」の「処理」などの問題は、依然として残る。 いろう いずれにせよ、こうした問題に関わる是非の判断は、技術そのものによって解決できる次元には属していない。体外授精に比し より身近に起こっている延命措置の問題。 たとえば胃瘻などは、マスコミもとりあげ関心を惹くようになったが、もはや自ら食 事をとれなくなった老人に対して、胃に穴をあけるまでしなくても、鼻からチューブを通して直接栄養を胃に流し込むことは、か なり普通に行なわれている。このような措置が、ほんのその一部でしかない延命に関する技術の進展は、以前なら死んでいたはず の人間の生命をキュウサイし、多数の療養型医療施設を生み出すに到っている。 しかしながら老齢の人間の生命をできるだけ長く引き伸ばすということは、可能性としては現代の医療技術から出てくるが、現 実化すべきかどうかとなると、その判断は別なカテゴリーに属す。「できる」ということが、そのまま「すべき」にならないのは、 核爆弾の技術をもつことが、その使用を是認することにならないのと一般である。 テクネー (TEX(VM) である技術は、ドイツ語 Kunst の語源が示す通り、「できること(können)」の世界に属すものであって、「すべきこと (sollen)」とは区別されねばならない。 テクノロジーは、本質的に「一定の条件が与えられたときに、それに応じた結果が生ずる」という知識の集合体である。すなわ ち、「どうすればできるのか」についての知識、ハウ・トゥーの知識だといってよい。それは、結果として出てくるものが望ましい かどうかに関する知識、それを統御する目的に関する知識ではないし、またそれとは無縁でなければならない。その限りのところ それが単なる道具としてニュートラルなものに留まりえない理由もある。 では、テクノロジーは、ニュートラルな道具だと、いえなくもない。ところが、こうして「すべきこと」から離れているところに、 ほうてき テクノロジーは、実行の可能性を示すところまで人間を導くだけで、そこに行為者としての人間を放擲するのであり、放擲され た人間は、かつてはなしえなかったがゆえに、問われることもなかった問題に、しかも決断せざるをえない行為者として直面する。 妊婦の血液検査によって胎児の染色体異常を発見する技術には、そのまま妊娠を続けるべきか、中絶すべきかという判断の是非 を決めることはできないが、その技術と出会い行使した妊婦は、いずれかを選び取らざるをえない。いわゆる「新型出生前診断」 3限目 問題文

回答募集中 回答数: 0