学年

教科

質問の種類

数学 高校生

210. ここでのf'(x)=0が異なる3つの実数解をもたない というのは2つもつor1つもつor1つももたない のいずれかである、ということですよね?? また「f'(x)=0の実数解の前後で」とはどういう意味ですか? 記述で書かなくてもいいですか?? [1]は重解また... 続きを読む

00000 重要 例題 2104次関数が極大値をもたない条件 関数f(x)=x-8x3+18kx2 が極大値をもたないとき,定数kの値の範囲を求め よ。 指針 4次関数f(x)がx=pで極大値をもつ 解答 x=の前後で3次関数f'(x) の符号が正から負に変わる であるから,f'(x) の符号が「正から負に変わらない」条件を考 える。3次関数 f'(x) のグラフとx軸の上下関係をイメージす るとよい。なお,解答の右横の図はy=x(x2-6x+9k) のグラフである。 ƒ'(x)=4x³—24x²+36kx=4x(x² − 6x+9k) f(x) が極大値をもたないための条件は、 f'(x)=0 の実数解の ① 前後で f'(x) の符号が正から負に変わらないことである。 このことは,f'(x)のxの係数は正であるから, 3次方程式 f(x)=0 が異なる3つの実数解をもたないことと同じである。 f'(x)=0 とすると x = 0 または x2-6x+9k=0 よって k≧1 [2]x2-6x+9k=0にx=0を代入すると したがって k=0,k≧1 [2]x=0を解にもつ 1-k≤0 ① 上部ろく[福島 よって、求める条件は, x2-6x+9k=0が [1] 重解または虚数解をもつ [1] x2-6x+9k=0の判別式をDとすると D≦08-01- D=(-3)²-9k=9(1-k) であるから 144864 Alba-0)-0 k=0 383 k²1 YA k> 重解ともう1つの実数 x f'(x) + 極大) f(x) 基本203,207 De=(no 75 k=0 3 [参考 [ 4 次関数の極値とグラフ]一般に, 4 次関数f(x) [4 次の係数は正] に対し, 206307878 は3次方程式で, 少なくとも1つの実数解をもつ。 その実数解をαとし、他の2つの解が実 -AVS-84- ( f(x)=0 数であれば B, γとする。 この解は次の4つの場合がある (4次の係数が負のときは、図の上下が 逆になり,極大と極小が入れ替わる)。 異なる3実数解 ② とする) gra, b p /k=1 0 1313/07 " € 01

回答募集中 回答数: 0
数学 高校生

198.2 記述に問題はないですか??

00000 よ。 接点 (2,-2) する。 える ='(a)(x-a) xの接点は は接線の下 >0 では接 ある。 この 曲線を2つに かし、 基本例題198 法線の方程式 2 -x³. 5xについて 3本 曲線 y= 9 ASES PO (1) 曲線上の点(2, -1/24) における法線の方程式 HEDON (2) (1)で求めた法線と曲線の共有点のうち、点 次のものを求めよ。 の線の方程式を求 指針 (1) 曲線y=f(x) 上の点A(a, f(a)) における法線の方程式は Ablicy 1 y—ƒ(a)=¯¯ƒ'(a)(x—a) (2)(1) で求めた法線の方程式と曲線の方程式を連立させて, xの3次方程式を解く。 解答 5 (1) f(x)=2012-2123xとするとf(x)=1/3x-33 5 6-2p+ よって、点 (2, -1/24 ) における接線の傾きは ② から 42 これをif'(2)= ・・22. ne by f(2)=3.2²-3-1 5 -14) 以外の点の座標 9 p.308 基本事項 ② 8318+x5¹²x=x すなわちy=-x+- 4 9 MAUROOM ASOR (2) 求める共有点のx座標は、次の方程式のx=2 以外の実数 解である。 5 4 a = -1 (²²x²-²3²x = -x + 1² ピー 整理して x3-3x-2=0 よって (x-2)(x+1)=0x したがって,求める点のx座標は, x=-1であり,求める共 13\-d) 有点の座標は (-1,13) 練習 ③ 198 (1) 曲線上の点 (1, 1) における法線の方程式 曲線y=x3-3x²+2x+1について,次のものを求めよ。 00000 - 24 ABST ゆえに,法線の傾きは-1である。 法線の傾きをとすると したがって、求める法線の方程式は D=6} =³&t$$_m׃′(2)=−1 よって y−(−14)=-1·(x-2) »)S—t—gl_inl-(6 *??_m=_ƒ(2) YA O lfd y=f(x) A 法線 法線 接線(21) 接線 (2) (1)で求めた法線と曲線の共有点のうち, 点 (1, 1) 以外の点の座標 x D7564 x=2が1つの解となるから, 左辺は x-2 を因数にもつ。 x=-1は重解であるから, この法線は曲線の接線でも ある。 p.314 EX129 311 6章 35 接 線 で n) Exc 36

回答募集中 回答数: 0
数学 高校生

61.1 このような記述でも大丈夫ですよね??

0000 式という えると の2 a+by^- 201 X [日本 2行目の式 1 x 解答 を断ってから 一割る。 なお (1)xを1の3乗根とすると 程式の左 ゆえに x³-1=0 (左辺=2 したがって を入れ 1-1- x この式と 1 ot Hit 基本例題 61 (1) 1の3乗根を求めよ。 (2)1の3乗根のうち, 虚数であるものの1つをとする。 (ア)2も1の3乗根であることを示せ。 1 えることが 1 指針 (1) (2) (1) w²+w³, +1+1, (w+2w²)²+(2w+w³²)² iznenkok. 2 (2) ア @= これを解いて, 1の3乗根は -1+√3i 2 練習 61 1の3乗根とその性質 基本58 3乗してαになる数,すなわち、方程式x=αの解を,αの3乗根という。 (1)で求めた方程式x=1の虚数解を2乗して確かめる。 (ア) (イ)は方程式x²+x+1=0, x=1の解→ ²+ω+1=0, ω²=1 2 -√3 i 4 口を よって, w2も1の3乗根である。 -91+2 (1) ω は方程式x+x+1=0, x=1の解であるから ω'+ω+1=0,ω'=1 よって x-1=0 または x²+x+1=0 -1+√3 i 2 とすると i 0 ² = ( = 1 + 2√³²)² =. 1-2√3 i+3i²_-1-√3i 2 とすると x³ =1 「POINT」 1. w²=(1-√3i)°_1+2√3i+3p _ _1+√3i 2 141 w² (x-1)(x²+x+1)=0 w²+w=(w³)² w+(w³) ² w²=w+w²=-1 w+1+w² w² よって また -=0 W ω'+ω+1=0から, w2=-ω-1 となり (w+2w³)²+(2w+w³)² = {w+2(-w-1)}²+(2w-w-1)² =(-w-2)²+(w-1)²=2w²+2w+5 +1= =2(-ω-1)+2+5=3 00000 (1) 200+50 (3) (w200+1)100+(ω100+1) 10 +2 3次方程式の解は複素数の 範囲で3個。 ω はギリシャ文字で、 オ メガ」と読む。 (検討) x=1の虚数解のうち、どち としても,他方が となる。よって、1の3乗根 it 1, w, w¹ ω'=1 を利用して, 次数を 下げる。 ω=-ω-1 を利用して、 次数を下げる。 12(w²+w+1)+3=2-0+3 としてもよい。 1の虚数の3乗根の性質 ①2+ω+1=0 ② ω'=1 がx2+x+1=0の解の1つであるとき,次の式の値を求めよ。 1 1 w² p.110 EX44 99 2章 11 高次方程式

回答募集中 回答数: 0
数学 高校生

62.1 方程式の解の1つをwとしているので x^2+x+1=0をw^2+w+1=0としてしまうと 二次方程式の2つの解がwで表せるようになってしまうので条件 と合わなくないですか??

100 0000 基本例題 62 x+x+1で割ったときの余り f(x)=x80-3x40 +7 とする。 の1次式 (1) 方程式x2+x+1=0の解の1つをω とするとき, f (w) の値をωの1 表せ。 (2) f(x) を x2+x+1で割ったときの余りを求めよ。 基本 53.61 重要 55 指針f(x) は次数が高いので、値を代入した式を計算したり、割り算を実行したりするのは い。 ここでは,これまでに学習した、次の方針に従って進める 高次式の値 条件式を用いて次数を下げる 割り算の問題等式 A =BQ+R の利用。 B = 0 を考える ω'+ω+1=0 (1) は x2+x+1=0の解であるから これを用いてまずの値を求め、その値を利用してf(ω) の式の次数を下げる。 (2) 求める余りはαx+b と表されf(x) = (x2+x+1)Q(x)+ax+b これにx=ω を代入すると f(w)=aw+b Q(x) は商 解答 (1) は x²+x+1=0の解であるから よって w²=-w-1, w²+w=-1 w²+w+1=0 また, 80=3・26+2, 40313+1 であるから (*) w³-1 3a+s=(w-1)(w²+w+1)=0 eee²=(a-1)=-(ω^+c)=(-1)=1) から1としてもよい。 は1の虚数の3乗根であ る。 f(w)=w8⁰-3w40 +7=(w³) ²6 w²-3(w³) ¹³.w+7 =126.(-ω-1)-3・13・ω+7=-4ω+6 (2) f(x) を x2+x+1で割ったときの商をQ(x), 余りをax+b (a,bは実数) とすると 練習 f(x)=(x2+x+1)Q(x)+ax+b ω'+ω+1=0であるから (1) から -4w+6=aw+b α, b は実数は虚数であるから a=-4, b=6 したがって 求める余りは -4x+6 f(w)=aw+b が成り立つ。 次数を下げて1次式に。 [参考] a b c d が実数, zが虚数のとき ① a+bz=0 ⇔ α = 0 かつ b = 0 ② a+bz=c+dz ⇔a=c かつ b=d [証明] [①の証明] (←) 明らかに成り立つ。 (⇒) b=0 と仮定するとz=- :=-1 このとき a=0 b=0 よって ② の証明は、(a-c)+(b-dz=0 として上と同様に考えればよい。 なお、上の①②は、p.62の①②を一般の場合に拡張したものにあたる。 2018をx²+x+1 で割ったときの余りを求めよ。 → (2) A=BQ+R 割る式B=0 を活用。 下の参考② を利用。 S 左辺は虚数,右辺は実数となるから矛盾。 基 3次 定業 指針 解 -18 (-1) すな これ よっ 左辺 した 別解 fC (x 右 こ し xC * E C

回答募集中 回答数: 0
数学 高校生

カ以降が分かりません。途中式・考え方も教えて頂けたら嬉しいです

演習 1.1 a,bを実数の定数として, xの3次方程式 x-(b+1)x2+(3a+b+5)x-4a+6-13 = 0 はx=2を解にもつとする。このとき イ b= であり,(*)は 7a+ 10 第1講 式と証明、 ウ r2_ I ax+a+ オ と変形できる。 太郎さんと花子さんは (*) の解について話している。 1=0 エ 太郎 : (*)の解がすべて 0 以上となるようなaの値の範囲は求められるかな。 花子:x- | ax+a+ オ=0の解について考えればよさそうだね。 一般に, 2次方程式の解を α, B とするとき, α, β がともに0以上とな る条件は覚えてる? 太郎 : 0 以上の2つの数は足しても、掛けても0以上となるから, α,βがとも に30以上となる条件は「α+B≧0かつαB≧0」 が成り立つことだよね。 花子: 複素数 α, βに対して 「(α, β が実数かつα≧0かつβ≧0) ⇒ (a+3≧0かつαβ≧0)」 は正しいけど (a+B≧0かつb≧0) ⇒ ( α,βが実数かつα ≧0かつβ≧0) 」 は正しくないから, それだけだと不十分だよ。 2次方程式の判別式をD とすると, D≧も満たさなければいけないよ。 (1・1は次ページに続く。) 二人の会話を参考にして, (*) の解がすべて1以上となるようなaの値の範囲を 求めよう。 一般に, 2次方程式の解をα, β とし, 判別式をDとすると, α, βがともに1以 上となる条件は である。 カ a+Bz が成り立つことである。 よって, (*) の解がすべて1以上となるようなaの値の範囲は ケ 0 ク 0 3 a+B 6 aß かつαB キ sas かつ D≧ の解答群(同じものを繰り返し選んでもよい。) ① 4 a+B-1 7aß-1 1 2 2 5 a+B-2 8 aß-2 第1講式と証明 複素数と方程式 指数関数 対数関数

回答募集中 回答数: 0