学年

教科

質問の種類

数学 高校生

(1)の問題に関して、チャート&ソリューションの9行目、y=k上に(2n-2k+1)個の点があるとはどういうことですか?

90 重要 例題 102 格子点の1 次の連立不等式の表す領域に含まれる格子点 (x座標, y である点)の個数を求めよ。 ただし, nは自然数とする。 (1) r≥0, y≥0, x+2y=2n CHART OLUTION 格子点の個数 0000 座標がともに 整数 (2) x≥0, y≤n², y≥x² MOITUIO の 直線xk または y=k上の格子点を求め加える...... 「不等式の表す領域」は数学IIの第3章を参照。 基本的 (1) n=1のとき n=2のとき 具体的な数を代入してグラフをかき, 見通しを立ててみよう。 n=3のとき yA ya YA x+2y=2・3 x+2y=2.2. -3 x+2y=2・1 Yo -2€ 2 -16 -10 1 0 2 3 0 2 3 4 5 n=1のとき 1+3=4, n=2のとき 1+3+5=9, (1) 解 n=3のとき 1+3+5+7=16 一般の場合については,境界の直線の方程式 x+2y=2n から x=2n-2y ………,0)上には(2n-2k+1)個の格子点 よって、 直線 y=k (k=n, n-1, が並ぶから (2n-2k+1)において, k=0, 1, ..., nとおいたものの総和が 求める個数となる。 び直 (2 J (2) n=1のとき n=2のとき n=3のとき A y y=x21 -yA y=x2+ (I-YA y=x -9 0 n=1のとき n=2のとき x 0 (1−0+1)+(1-1+1)=3, -4+ -1 x (4−0+1)+(4−1+1)+(4−4+1)=10, (9-0+1)+(9-1+1)+(9-4+1)+(9-9+1)=26 n=3のとき 一般(n) の場合については,直線x=k (k=0,1,2, n-1, n) E nとおいたものの総和が求める個数となる。 また、次のような, 図形の対称性などを利用した別解も考えられる。 (1)個の格子点が並ぶから,(n+1)において,k=0, 1, (1)の別解 三角形上の格子点の個数を長方形上の個数の半分とみる。 このとき、対角線上の格子点の個数を考慮する。 01- (2)の別解 長方形上の格子点の個数から 領域外の個数を引いたものと考える。

回答募集中 回答数: 0
数学 高校生

それぞれ赤線が引いている部分が1となっている理由が分かりません。途中式を教えて下さい🙏

--=(2√3-3)*- 4 √(2 (2√3-3)-1) 出ない [2]回目の試行終了時に、8のカードが偶数回 出ていて、(+1)回目の試行で8のカードが 出る [1]の確率は 1 1 [2] は互いに排反であるから Px+1=Pn+ 行った後にできる正方 て (n+1)回行った の長さをαで表す。 [2]の確率は こできる正方形の 3 1 すなわち 8 にできる正方形 + 1) 回行った後 であるから 確率は,その試行で8のカードを取り出す確率 P₁ = 1 (2) 試行を1回行うとき, 8のカードが奇数回出る √5 3a -a 8 =22pot/1/2 を変形すると 3 1 Pn+1 = Pn 2 4 2 したがって、数列{p-12 は公比 2013 の等比数 1 1 1 3 列で,初項は P1 = 2 8 2 の等比数列 1 ゆえに Pn - 2 84 3/3\n-1 偶数に である。 "回投げたときのPの座標が奇数で, (n+1) 回目にBが起こる (2) ”回投げたときのPの座標が偶数で, (n+1)回目にAが起こる (1-an) [1] の確率は [2] の確率は an 1 2 [1], [2] は互いに排反であるから すなわち an+1 an+1 = (1-an). 2 an+1= 2 3 + an⋅ 2 1 3 ・an 11/1/30gを変形すると an an+1 2 ----- an したがって, 数列{a. - 12 は公比 -1 の等比 1 1 数列で,初項は a1 3 2 2 n-1 ゆえに == a n よって an 両辺を3"+1で割 よって、数列 等差数列であ すなわち したがって (3)+2+a a+2 公 数 等比数列 したがっ 3(-2)-1 a=a すなわ 初項は にも成 よって よってp=/12/11- (12) 881個のさいころを投げて, 5以上の目が出るこ とを A, 4以下の目が出ることをBとする。 2 1 Aが起こる確率は 89 (1) 250万+1+60=0を変形すると an+2-24n+1=3(x+1-24 m) =2(a+1-3a) [別解 ① C

回答募集中 回答数: 0