学年

教科

質問の種類

物理 高校生

物理の試験範囲に該当するページを教えてください🙇‍♀️🙇‍♀️

CONTENTS」の学習内容 基・・・ 「物理基礎」の学習内容 序章 物理の基礎練習・・・・・・ 1 物体の運動・ 2 落下運動 特別演習 第Ⅰ章 力学Ⅰ 三角比とベクトル ③3 力のつりあい 4 運動の法則・・ 特別演習 ② 物体が受ける力のみつけ方 ③ 運動方程式の立て方 5 剛体にはたらく力・・・物 ⑥6 力学的エネルギー・・・ 基 総合問題 77 運動量の保存 8⑧ 円運動 19 単振動・・ ⑩0万有引力 総合問題 (7) 基物 基物 ・基 第Ⅱ章 力学ⅡI 総合問題 [物 物 物 第Ⅲ章 熱力学 11 熱とエネルギー・・ 12 気体の法則と分子運動 4 14 26 30 40 48 52 60 68 80 86 96 108.56 118E76 13 気体の内部エネルギーと状態変化 150 第IV章 波動 14 波の性質 15 音波 ⑩6 光波 総合問題 01 & 0 第V章 電気 17 電場と電位・・ 18 コンデンサー 19 電流・ 総合問題 基物 166 基物 物 180 192 000000000 ( 206 物 210 物煙設 222 基物 232 248 SU It 第VI章 磁気 20 電流と磁場・ 物 21 電磁誘導・ 物 22 交流と電磁波・ ・・・・・・・・・ 物 総合問題 第VII章 原子 [物 1268823 電子と光・ 24 原子の構造・ 25 原子核と素粒子・・・・・・・物 問題 1321 論述問題 162 資料・ 略解‥ -mo A. IX IA38-moNI 1409** ***TONIERE 20 252 262 272 282 286 300 306 318 322 ④ 微分・積分と物理 326 331 337

回答募集中 回答数: 0
数学 高校生

なぜ赤で囲われたところのように導けるのですか?

可礎問 150 第6章 95 接線の本数 曲線C:y=-x 上の点を T(t, f-t) とする. (1) 点Tにおける接線の方程式を求めよ. (2) 点A(a,b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ.ただし, a>0, b=α-a とする. (3) (2) のとき, 2本の接線が直交するようなα, b の値を求めよ. 精講 (2) 3次関数のグラフに引ける接線の本数は、接点の個数と一致し ます.だから, (1)の接線に A (a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 94 注で学習済みです。 (3) 未知数が2つあるので,等式を2つ用意します。 1つは (2)で求めてあるので,あと1つですが,それが「接線が直交する」 を式にしたものです. 接線の傾きは接点における微分係数 (83) ですから, 2つの接点における微分係数の積=-1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと,f'(x)=3x²-1 よって, Tにおける接線は, y−(t³—t)=(3t²-1)(x− t) ∴.y=(3t2-1)x-2t3 (2) (1) の接線は A (a, b) を通るので b=(3t²−1)a-2t3 :. 2t³-3at²+a+b=0___······(*) (*)が異なる2つの実数解をもつので g(t)=2t3-3a2+a+b とおくとき, y=g(t) のグラフが,極大値、極小値をもち, (極大値)×(極小値)=0 であればよい. 94 注 g'(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t = 0, t = a だから 85 y=x³- A(a,b) f (t,t³-t)

回答募集中 回答数: 0