学年

教科

質問の種類

情報:IT 高校生

情報1 コンピュータでの実数の表現についてです。 教科書にはこのように(添付した画像)書かれているのですが、何が何だか全く分かりません… 明日考査なのでどなたか解説していただきたいです😭

1 小数点の位置を固定して 表す方法を固定小数点数と いう。 表現できる数値の範 囲が浮動小数点数よりも狭 い。 ② 最上位の桁がすべて 1 で共通なので,その次から を仮数部として表現すれば よい。 例えば, 1.0101なら仮数 部は0101, 1.1111なら 仮数部は1111である。 ③16ビットの浮動小数点 数は半精度浮動小数点数と 呼ばれる。 このほかに, 32 ビットの単精度浮動小数点 数や64ビットの倍精度浮 動小数点数などがある。 ④指数部が5ビットの場 合, 表現できる数は25個で あるが, 整数の表現 (- 16~15) とは異なる表し 方をする。 指数部の大小関 係を比較しやすいように, 補数を使わず0以上の値 に変換して表す。 指数に 15 (バイアス値)を足し て-15を00000,16を 11111とし, -15~16 を表す。 4 コンピュータでの実数の表現 小数部分を含む実数を表す場合には,次のような形の浮動小数点数 ① がよく使われる。 符号部 指数部 × 仮数部 10進数での浮動小数点数の表し方は,符号は+か-, 指数は10の何 乗の形, 仮数は最上位の桁が1の位となる小数である。 AUN - 423 = 102 × 0.375 10 3.75 2進数での浮動小数点数の表し方は,基本的には10進数と同じであ る。コンピュータで扱うためには, すべてを0と1で表現しなければ ならないので,次の工夫をする。 = 符号部 0 を正, 1 を負とする。 指数部 仮数部 + 10.1 ↓ +2×1.01 符号部 ↓ 0 1 0 0 一番小さな指数が0となるように数値を加え,調整する。 最上位の桁は常に1となるので,1を省略し,その次の 2番目の桁からを仮数部とする。 16ビット(2バイト)で,符号部を1ビット,指数部を5ビット, 回 仮数部を10ビットとして表現すると次のようになる。 符号部 ( 1ビット) 指数部 (5ビット) 仮数部(10ビット) 例えば, 10進数の 「2.5」 を, 16ビットの2進数の浮動小数点数で 表すと,次のようになる。 ①10進数の 「2.5」 を2進数の小数にする 2.5=2+0.5=2′×1+2°×0+ 2 ′ ' x1 = 10.1 (2) ②2 進数の10.1を浮動小数点数にする 指数部 1 +15=16 0 0 0 1 0 4.23 × 0 0 仮数部 01 0 0 0 0 0 は、0.001 小数の桁の び、その 123 この2つを

解決済み 回答数: 0
数学 高校生

(2)の ∵(1) の行から分かりません... どなたか教えてください

導関数 93 (1) f(x), g(x) をxの整式とするとき, 次の等式を証明せよ。 {ƒ(x)g(x)}'=f'(x)g(x)+ƒ(x)g'(x) (2) f(x) を0でないæの整式とする. 自然数nについて d ¹/__ { f(x)}" =n{f(x)}"~¹ƒ'(x) dx であることを証明せよ. 精講 の特殊な例です. どちらも数学Ⅲで 扱うものですが、知っておいて損はないでしょう. (1) 導関数 f'(x) の定義から出発しましょう. 関数 y=f(x) が与えられたとき、xのおのお のの値αに対し,f'(a) が存在するとき, 対応 a→f'(a)は1つの新しい関数となります。 これはf(x) から導かれた新しい関数ですから, f(x) の導関数 (derived function, derivative) といい, f'(x) と表します。 (x)^x=(1) f'(x)=lim f(x+h) -f(x) h h→0 f(x) から f'(x) を求めることを微分するとい います. 導関数の表し方は f'(x) のほかに dy d y', y, dr' anf(x), Df(z) (1) は積の微分, (2) は合成関数の微分 解法のプロセス dy などもあります。」はニュートン, dx (1) {f(x)g(x)}' =lim h→0 BROSSARD a 213 ニッツが用いた記号です. (2) 自然数nについての証明問題ですから,数 学的帰納法を使うとよいでしょう. f(x+h)g(x+h)-f(x)g(x) =lim h→0 はライプ 解答 (1)積の微分 iu-te {f(x)g(x)} 導関数 f'(x) の定義 ↓ f(x+h)-f(x) h lim- h-0 ↓ (滋賀大) =f'(x)g(x)+f(x)g'(x) (2) 合成関数の微分 {(f(x))"}' =n{f(x)}"-¹f'(x) AJSHOW 特に {(ax+b)"}' =na(ax+b)-1 この公式は使えるようにして おこう {f(x+h)-f(x)}g(x+h)+f(x){g(x+h)-g(x)} 導関数の定義 ◆f'(x), g'(x) が現れ るように工夫する 第6

解決済み 回答数: 1
数学 高校生

数IIの二項定理の問題です。 赤線部の問題で、2行目の式の 意味が分からないので教えてください。

重要 例題 16 n桁の数の決定と二項定理 (1) 次の数の下位5桁を求めよ。 (ア) 101100 (イ) 99100 (2) 2951 900で割ったときの余りを求めよ。 解答 (1) (ア) 101100=(1+100)'=(1+102) 100 (1) これらをまともに計算することは手計算ではほとんど不可能であり,また,それ を要求されてもいない。 そこで,次のように 二項定理を利用すると,必要とされ る下位5桁を求めることができる。 (ア) 101100=(1+100)'=(1+102) 100 これを二項定理により展開し,各項に含ま れる 10"(nは自然数) に着目して,下位5桁に関係のある範囲を調べる。 (イ) 99100=(−1+100)'= (−1+102) 100 として, (1) と同様に考える。 (2) (割られる数) = (割る数) × (商)+(余り) であるから 2951を900で割ったと きの商を M, 余りをrとすると, 等式 295 900M+r (Mは整数, 0≦x<900) が成 り立つ。 2951 (30−1)であるから, 二項定理を利用して, (30-1)を900M+r の形に変形すればよい。 =1+100C ×102 + 100C2 ×10+10°×N =1+10000+495×10 +10° ×N ==S (Nは自然数) この計算結果の下位5桁は,第3項,第4項を除いて も変わらない。 よって, 下位5桁は 10001 100 (イ) 99100=(-1+100)'=(−1+102) 10 =1-100C1x102+100C2×10+10°×M =1-10000+49500000 + 10° × M =49490001+10° × M (Mは自然数) この計算結果の下位5桁は,第2項を除いても変わら ない。 よって,下位5桁は 90001 (2) 2951(30-1)51 000 [類 お茶の水大] ・基本1 =900(3048-51C1×3048+.・.・.・-51C49 +1 +629 ここで,3048-51C1 × 30 +51 C49 +1は整数である から 295 900で割った余りは 629 である。 <展開式の第4項以下をま とめて表した。 10"×N (N, nは自然数, n≧5) の項は下位5桁の 計算では影響がない。 展開式の第4項以下をま とめた。 なお, 99100 は 100 桁を超える非常に大 きい自然数である。 900=302 =3051-51C1×3050+ 51 C49×302+ 51C50×30-1(-1)'は =302 (3049-51C1 ×3048 +· ・・・ -51C49) +51×30-1 =900(304-51Ci ×3048 + ・・・・・・-51C49) +1529 が奇数のとき -1 rが偶数のとき 1 1529=900+629 21 一章 1 章 ① 3次式の展開と因数分解、 二項定理

解決済み 回答数: 1