学年

教科

質問の種類

物理 高校生

26、27、28全て分かりません 教えてください!

26 27 28 29 質量 m をもつ物体が、 重力 (重力加速度の大きさをgとする)によって直線上を運動す るとき、その運動の加速度の大きさを求めよ。 LARS 軽い糸の先に m = m = 5.0 × 10-1[kg]のおもりをつるし、 下記のような運動をさせたときの糸の 張力の大きさ T [N] を求めよ。 ただし、鉛直上向きを正の方向とし、重力加速度の大きさを g=9.8 [m/s2] とする。 (1) c = 2.0 [m/s] の等速度で上昇させたとき。 (2) a=2.0 [m/s2] の等加速度で上昇させたとき。 地球の表面にある物体の質量をm、地球の質量M、地球の半径をrとする。このとき、次 の問に答えよ。 ただし、 万有引力定数をGとし、また地球の自転による遠心力は無視できるも のとする。 (1) 地球の表面における重力加速度の大きさg を求めよ。 (2) 万有引力定数 G = 6.673 × 10-11 [N.m²/kg'], 地球の質量 M = 5.972 × 1024 [kg],地 球の半径r= 6.371 × 10° [m] であるので、地球の表面における重力加速度の大きさgは、 何 [m/s2] か 図のように、質量が無視できて自然長が等しいばね A、 B を、 ① 直列、 ② 並列、で固定 した。 ばね定数をそれぞれkA、 kB とするとき、次の各問に答えよ。ただし、ばねの重さは無

回答募集中 回答数: 0
物理 高校生

Ⅰ(1)について. ドップラーの式を使って解き,答もあたりましたが,疑問があります.問題文に"われわれから速さv[m/s]で遠ざかっている"とありますが,これは相対的な速度のことだと思います.そうすると,ドップラーの式:"f'={(V-v1)/(V-v2)}f"に当てはめ... 続きを読む

Ⅰ 宇宙には活動的中心核をもつ銀河が数多く知られている。 それらの中心部には小サイズで巨大質量の 天体があり、その周りを厚さの薄い分子ガス円盤が高速回転している姿が明らかになってきた。 比較的穏やかな渦巻き銀河M106 は, われわれの銀河から遠く離れていて, 数100km/s もの速さで 地球から後退している。その中心付近から放射されている水蒸気メーザー (波長 入 = 0.0135m) の電波 の観測が野辺山の電波望遠鏡で行われた。 その結果, 図1のようにこの銀河の後退運動によるドップラ 一効果でずれた波長 入 〔〕 付近に数個の強い電波ピークが観測された。 その波長域の最小波長 入 〔m〕, 中心波長 入 〔m〕, および最大波長袖 〔m〕 は -=0.0016, th No -=-0.0020, (19510円)*(30 で与えられることがわかった。 1 No ic 図 1 Ac-do Zo λ2-10 20 -=0.0052 水蒸気メーザーで 輝くスポット 回転 回転 分子ガス円盤 中心天体 図2 (1) 波長 〔m〕 の電波を放射する天体が, われわれから速さ 〔m/s] で遠ざかっているとき,われわ れが観測する波長が入[m] であるとする。 vを入, 入および光速 c を用いて表せ。 (2)c=3.0×10°m/s として, 図1の波長 A, Ac, A に対応するガス塊のわれわれに対する後退速度 ひ1, vc, v2 [m/s] を ] x10m/sの形で求めよ。 には小数第1位までの数字を入れよ。 (3) ひ-vc, |v-vel の値を求めよ。 TEX Ⅰ (3) より | ひ-vc|=|vz-vel となるが, この結果は複数の放射源 ( ガス塊)が全体の中心の周りを高 速回転していることを暗示している。 ⅡI 中心波長 Ac 付近で明るく輝く複数のガス塊の運動の時間変化が調べられた. その結果, これらのガ ス塊は中心から薄いドーナツ状分子ガス円盤の内側端までの距離 Ro=4.0×10m を半径とする円軌道 を一定の速さで回転しているとするとよく理解でき, その速さは Ⅰ (3) で求めたガス塊の後退速度の差 Vo(=|u-vc|=|02-vel) と一致することがわかった。 図2に回転する分子ガス円盤の概念図を示す。 ただし、 万有引力定数をG[N・m²/kg ] とする. (1) 質量M(kg) の中心天体の周りを質量のずっと小さい (m[kg]) ガス塊が半径R [m]の円周上を速さ V [m/s] で万有引力による円運動をしているとき, ガス塊の円運動の運動方程式を記せ。 ●解説 I (1),(2) 天体の出す電波の振動数をfo (=clio) とすると, 長さc+vの 中に fo波長分の振動が含まれるから 研究 λ=c+v_c+v., -.Ao fo (3) Ⅰ(2)の結果より 2-20 20 C この結果に、問題文で与えられた 入=入, Ac, i に対する (^-入o)/20 の値,および c=3.0×10°m/s をそれぞれ代入すると ひ=(-2.0×10-3)×(3.0×10°)= -6.0×10m/s ve=1.6×10-3)×(3.0×10°)=4.8×105m/s v2=(5.2×10-3)×(3.0×10°)=15.6×10m/s ドップラー効果◆ STEFON 波源が速さで後退すると,cの長さに含まれていた波がc+v の長さ に含まれることになって、波長が伸びる。(単泉) ところで, 図のように, ある点を中心に円運動をしている天体から出る 光 (電磁波)を十分に遠方から観測する場合, 中心天体の後退速度をv, ガ ス塊の円運動の速さをVとすると, 点a, c から出る光の後退速度はvc =v, bから出る光の後退速度は dから出る光の後退速度は V, v2v+V である。ゆえに V1-Ve=-V, #PED WAXXENT v2-vc=V となる。逆に,ひ-vc|=|v2-vel であれば,ガス塊の運動が円運動であることが暗示される。 なお、M106 の後退速度はせいぜい106m/s程度で,光速の1/100 以下であるから,相対論的なドップ ラー効果の式ではなく,普通のドップラー効果の式を用いてよい。 観測者 v-v b d V FV v+V a

回答募集中 回答数: 0
物理 高校生

1,2,3とも解りません。解き方(公式等)を教えて欲しいです。

問題 1 ケプラーくんは、質量Mの超巨大ブラックホール、 ガルガンチュアの周囲を公転する宇宙船の乗務員である。 初 め、この宇宙船はガルガンチュアを中心とする半径rの真円軌道を描いていた。 この宇宙船の中で生活し続けて早1 年、今、この宇宙船に危機が迫っていた。 そう、異臭問題である。 乗組員の生活ゴミやら排泄物やらは、 宇宙船の中 で溜まりに溜まり、もはや臨界点を突破していたのだ。 ケプラーくんは、 そこで異臭の原因を全部カプセルに詰め込 んで、船外へ捨ててしまうことにした。 質量 mo のカプセルを捨ててしまったところ、 宇宙船は質量がmにまで減 り、ガルガンチュアを一方の焦点とした近日点距離が遠日点距離が R であるような楕円軌道に移った。 公転軌道 はどの軌道の場合でも、ガルガンチュアのシュバルツシルト半径に比べて十分大きいものとし、 古典的な万有引力が 適用できるとする。 万有引力定数は G とし、 光速をc とする。 (1) 真円軌道で公転運動する宇宙船の速さ と、 公転周期 To を M, m, mo, r, R, G の内、 必要な ものを用いて簡潔に表せ。 (2) カプセルを捨てた後の楕円軌道における宇宙船の近日点での速さ v1 と v2をそれぞれ M, m, mo,r, R, G の内、 必要なものを用いて簡潔に表せ。 (3) カプセルを捨てた後の宇宙船の楕円運動における公転周期T を M,m,mo, r, R, G の内、必要 なものを用いて簡潔に表せ。

回答募集中 回答数: 0
物理 高校生

回答見てもやり方が分からないので簡単なやり方を教えてください

(1) 球体が机上を離れす いて表せ。 (2)(1)における球体の等速円運動の角速度wをm, k, g, L, 0のうち必要なものを用いて表せ。 (3) 球体の等速円運動の角速度がある限界値 um を超えていると、球体は机上を離れる。限界値をm kg Lのうち必要なものを用いて表せ 56 (4) フックの法則にしたがうばねの伸びの限度をxとする。この限度内に球体が机上を離れるために、ばね定 数kが満たすべき条件をm,g, L, xm のうち必要なものを用いて表せ。 問題2 次の文を読んで,以下の問いに答えよ。 ただし,解答は記号 0, L,m, d.gのうち適するものを用いて表せ。 〔I〕 右図のように水平面と角0 〔rad] をなす滑らかな斜面の上に, ばね AB が置 かれている。一端A は斜面に固定され, 他端 B は斜面に沿って自由に動くこと ができる。 B端の上方L [m]の場所から質量m[kg]の物体 C を初速度 0m/s で すべらせた。 物体CはB端に触れた後, B端と離れずに運動しつづける。 そし て,物体CはB端に触れた場所からd[m〕 だけ進んだところで運動の向きを変え,それ以後は単振動を行っ た。ここで,重力加速度の大きさをg [m/s2] とし, 空気の抵抗およびばねの質量は無視できるものとする。 (1) B端に触れる直前の物体Cの速度 uc [m/s] を求めよ。 Amm 0 (2) ばね定数k [N/m〕 を求めよ。 (3) 単振動の周期 T [s] を求めよ。 〔Ⅱ〕 物体Cとばね AB を右上図に示した状態にもどした後、物体Cに斜面に沿った下向きの初速度 v[m/s] を与えてすべらせた。 物体CはB端に触れた後, B端と離れずに運動しつづける。 そして, 物体CはB端に 触れた場所から2d [m〕 だけ進んだところで運動の向きを変え,それ以後は単振動を行った。 ただし, 解答に ばね定数kの記号が含まれてもよい。 (4) 物体Cに与えられた初速度v[m/s] を求めよ。 (5) 単振動を行っているときの物体Cの速度の最大値 Vmax [m/s ] を求めよ。 L

回答募集中 回答数: 0
物理 高校生

93番の⑴について質問です。 僕はmg=G Mm/(R+h) という式を立てて解いたのですが、解説はmg=の式を立てずにやってました。 何故ですか?

92. 人工衛星の軌道 仮に、日本 人工衛星を考えると, その人工衛星は、図のような軌道をまわ る必要がある。 しかし、地球による重力のみで運動している人参 工衛星は,そのような軌道をまわることはできない。静止衛星 8. が,赤道上空の円軌道をまわらなければならない理由を簡単に 説明せよ。 させら 日本 01XT.OLUTIN R_ ついて,次の各問に答えよ。 1) 人工衛星の速さを求めよ。 2) 人工衛星の力学的エネルギーを, m, g, R を用いて表せ。 ただし 人工衛星 93. 重力と位置エネルギー 地球の半径をR,地表での重力加速度の大きさをgとする。 地表から高さんの点にある質量mの物体について,次の各問に答えよ。 (1) 物体が高さんの点で受けている重力の大きさを, m, g, R, h を用いて表せ。 (2) 物体が高さ0の地表にあるときと比べて, 高さんの点では, 無限遠を基準にした万 有引力による位置エネルギーはどれだけ大きいか。 m, g, R, hを用いて表せ。 ヒント 万有引力定数をG, 地球の質量をMとして計算し、GM=gR2 の関係を利用する。 <->18 大の 大 4. 人工衛星の力学的エネルギー 地球の半径をR 地表での重力加速度の大きさをgとする。 地表から,する -R 高度Rの円軌道をまわっている質量mの人工衛星に 犬の 赤道 Em

回答募集中 回答数: 0
物理 高校生

(2)で力の向きがどっちにはたらくか分かりません

Far, most sold product . Those bran new col colors but have jons, Those should helj of use fo r all of yd icty of sizes of them normal usage as Jap, er, also it can be use papers, writing ds and as a lot of l コ enjoy the yar = have to コce is not an of co Feath 物理重要問題集 62 paj 42 7単振動·単振り子 58.地球のトンネル〉 球を干住R imj の球体とみなし、その中心を通る直線 状のトンネルを考える。図は中心0を含む地球の断面を示し ており, A とBはそれぞれ地表面上の出入り口とする。0を 原点とし,BからAへ向かう向きを×軸の正方向とする。ト ンネルの占める体積は地球全体の体積に比べて無視できるは ど十分小さく,トンネルの内部において, 質量 m [kg] の小 物体はトンネルの壁面と接触せずに運動するものとする。また, 地球の密度は一様であり、 地球の大気および地球の自転, 公転, 他の天体の及ぼす影響は考えないものとする。地表面 における重力加速度の大きさをg [m/s°] として, 次の問いに答えよ。 (1) 地球の質量を M [kg), 万有引力定数をG[N·m?/kg°] としたとき, gをM, G, R を用い て表せ。 (2) 小物体がx軸上の位置x [m] にあるとき, 小物体にはたらく力F[N] を, x<-R, -RS×SR, R<xの3つの場合に分けて, g, m, R, xを用いて表せ。 ただし, 小物体 にはたらく力は, 0を中心とする半径|x|の球内部の質量がすべてOに集まったと考え, その全質量が小物体に及ぼす万有引力に等しいものとする。 (3) (2)で求めた力Fをxの関数として, グラフにかけ。 Aで小物体を静かにはなしたところ, 小物体はOを中心に, 振幅尺の単振動を始めた。 (4) 小物体が0を通過するときの速さ[m/s] を, g, m, Rのうち必要なものを用いて表せ。 (5) 小物体がAを出発してから, 初めてBに到達するまでに要する時間を [s] を, g, m, Rの うち必要なものを用いて表せ。また, 重力加速度の大きさを 1.0×10m/s°, 小物体の質量 を1.0kg, 地球の半径を 6.4×10°m としたとき, 時間tを有効数字2桁で求めよ。 次に,小物体を0からある初速でx軸の正の向きに打ち出したところ, 小物体はOにもど らず無限の遠方まで飛んでいった。 (6) 小物体がOにもどらず無限の遠方まで飛んでいくために必要な最小の初速 vo [m/s] を, 9, m, Rのうち必要なものを用いて表せ。 R 59 で が は 箱 (18 愛知教育大)

回答募集中 回答数: 0