学年

教科

質問の種類

数学 高校生

(2)の(ア)の解答のマーカー引いてある部分がなぜこの式変形になるのか教えて欲しいです

628 基本 28 内心、傍心の位置ベクトル 00000 (1)AB=8. BC=7,CA=5である △ABCにおいて、内心を1とするとき、 を AB, AC で表せ。 (2) AOAB において, OA=d, OB= とする。 別解 ベク とす (ア) を2等分するベクトルは,k ることを示せ。 (+) (kは実数, k≠0) と表され OA' 形O 点 C よっ (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 指針 線の交点をPとする。 このとき,OP を で表せ。 (1)三角形の内心は,3つの内角の二等分線の交点である。 次の「角の二等分線の定理」 を利用し, まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線BIに注目。 基本 26 (2)Oの二等分線と辺ABの交点をDとして,まずODを,で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1 となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると,点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し、係数比較」 の方針で。 AC=OA となる点Cをとり, (ア)の 点Pは∠Aの外角の二等分線上にある → 結果を使うとAPはa で表される。 OP = OA+APに注目。 (イ) 点 20 らっ OP AC と、 ZE よ a 0 解答 (1) △ABCの∠Aの二等分線と辺BCの交点をDとすると BD: DC=AB: AC=8:5 ZCの二等分線と辺 A ABの交点をEとし AE: EB=5:7, 5AB + 8AC 別解 よって AD= 10 13 8 15 EI:IC=:5 8 56 また, BD=7・・ であるから =2:3 A 13 13 56 B 7 D C AI: ID=BA: BD=8: -=13:7 このことを利用して もよい。 13 角の二等分線の定理 ゆえに 15 ゆえに 0D= |6|0A+|4|OB |a|+|6| AI=2AD=1.5AB+8AC-1AB+/AC 20 20 13 (2)Oの二等分線と辺AB の交点をDとすると AD: DB=0A: OB=||:|| を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 検討 0 aba a+ba 61 + (2) 練習 (1) |4| D|6| ③ 28 (2 求めるベクトルは, t を t≠0 である実数としてtOD と表 ab される。 |a|+|6| t=kとおくと, 求めるベクトルは (+) (kは実数, k≠0) a A tOD=|al|b a+ba +

回答募集中 回答数: 0
化学 高校生

合ってるか教えてください! 例題15 2.(2)わかんないです!

416 全力投球! (2)I中の(*)から(b)への状態変化を何というか。 (3) 作図図Ⅰ中のX点にある水を, 一定の速 さでゆっくり加熱してV点にした。このときの と を示 す概略図を示せ。 ただし、水の場合は液体状態 の比熱が他の状態よりも大きいこと, および次 のデータも利用せよ。 以下の各問いに答えよ。 図Iは、純粋な水について 圧力および温度に よる三態変化を表したもので、状態図とよばれて いる。 (1) I中の()の各領域は、水のどのような 状態を示しているか。 1013 hPa 11 圧力 X (お) (3) (B) (b) 温度 I 圧力 (hPa) 1000円 800 600 (4) 水を60℃で沸騰させるには、外圧を何 hPa にすればよいか。 蒸発熱 41kJ/mol, 融解熱 6.0kJ/mol 図IIは、図中の曲線 OB を 10~100℃の範 で、 さらに詳しく描いたものである。 400) 200 20 40 60 80 100 図Ⅱ (5) 図のように, なめらかに動くピストン付き のシリンダー内に水を入れ、 空気を除いて60℃に保った。 その後, 次のような操作を行うと, 器内の圧力は何hPa になるか。 ただし, いずれの場合も、 器内に液体が残っていた。 ① 60℃に保ったままピストンを引き上げて, 器内の気体部分の 体験を初めの2倍にした。 ②その後、ピストンは固定したままで, 温度を80℃にした。 水 図Ⅱ 蒸気圧と体積例題15) 右表は、水の飽和蒸気圧を示したものである。 この表を参 考にして下の各問いに答えよ。 ただし, 気体定数Rは8.3× 10 [Pa・1/(K・mol)) とする。 1 と 温度 飽和蒸気圧 [t] [hPa] 27 36 反応させ、発生する水素を水上置換で 捕集したところ, 27℃ 1016hPa の下で体積が300ml で あった。 捕集した水素は何molか。 47 103 87 610 100 1013 2 図のように47℃に保ったピストン付きの容器内に 水素と 0.15molの水が入っている。 この内の圧力は 1013hPa, 体積は10であった。 水素の水への溶解、およ 液体の水の体積は無視できるものとする。 (1) 47℃に保ったままピストンを押して、 気体 半分にすると、 内の圧力は hPaになるか。 (2) 47℃に保ったままピストンを引き上げて, 気体の体 307にすると, 器内の水は何%蒸発しているか。 水 (3) 47℃に保ったままピストンを動かして体積を変える とき、 器内の水素および水蒸気の各分圧は,それぞれどのように変化するか 次のグラフから1つずつ選び記号で示せ。 ただし、 グラフのスケールは任意 である。 (イ) 圧力 男 圧力 圧力 圧力 体験 圧力 体積V 圧力 体積 (2) 圧力 体積 体積 体 体積 体積 (4)温度を87℃に変化させた後, ピストンを動かして体積を変えていくとあ るところでちょうど水がすべて水蒸気になった。 このときの水素の分圧は何 hPa か

回答募集中 回答数: 0
化学 高校生

この大問9の(3)が全くわかりません どういう式を立てれば良いかなど方針から立てられない解き方も分からない状況です 量的関係などの式は分かるのですがどう使うか分からないのです。

BD=Ya, 9 アスコルビン酸(ビタミンC)は酸化防止の目的で使われている食品添加物の一つである。 アスコルビン酸は水溶液中で ①式のように還元剤としてはたらく。 C6H8O6C6H6O6 + 2H+ +2e (1) ・① 0.020mol/L 過マンガン酸カリウムKMnO4 水溶液10mLに希硫酸を十分に加えたのち, n mol のアスコルビン酸を 加えたところ、過マンガン酸カリウムの一部は残っていた。この残った過マンガン酸カリウムをすべて反応させるのに、硫酸 鉄 (Ⅱ) が 2.0×10mol 必要であった。 これについて、次の各問いに答えよ。 MnO4 + 8H+ +5e' → Mn2+ + 4H2O Fe2+→ Fe3+ + e 10 5×0.020× 1000 = 1x n (1) 過マンガン酸カリウム水溶液の色として最も適するものを、次のうちから選んで答えよ。 ア 赤紫色 無色、白色 黄色 (2) アスコルビン酸1.0mol と過不足なく反応する MnO4の物質量は何molか (S) 0.0002.0*60* (0) 500H 5=n =0.0002m (2ヶ 1. Omol. 2×1=2 2 = 5x 404517 Xmoll 5xx=5x 2 25000 ← この実験で加えたアスコルビン酸の物質量 n mol はいくらか。 5 0,0.002150000) x20.4 allofsts 25000mal

回答募集中 回答数: 0
数学 高校生

棒全部から下がわからないです。

□130 太郎さんと京子さんは,命題の証明に関する次の問題について話している。 【問題】 a b は実数とする。 このとき, 次の命題を証明せよ。 活用間 131 文 「a +6≦2 ならば, a ≦1 または 61である。」 小 太郎:この命題の対偶は証明できそうだね。 た 京子:そうだね。 この命題の対偶はアならば,イ」になる。 太郎: 対偶を証明する以外に,この命題を証明する方法はないかな。 京子:次のように考えてみたらどうだろう。 α+6≦2 のとき,a≦1であ るなら,この命題の結論は真になるから,この場合は考える必要がな い。 a+b≦2 で, さらにウであるときに, エであることを 証明すれば十分である。 京子 太郎 京子 太郎 : 確かにそうだね。 それなら,次のようにして証明できる。 【太郎さんのノート】 a + b≦2 より b≤2-a ここで,ウ であるとき したがって, ウ であるとき, エ となる。 (1) に当てはまるものを、次の各選択肢のうちから一つずつ選べ。 ア の選択肢 ⑩ a ≦1 または 6≦1 ① a ≦ 1 かつ 6 ≦1 ② a > 1 または 6>1 ③ a > 1 かつ 6>1 の選択肢 ⑩ a + b 2 である ① a+b>2 である ウ オに当てはまるものを、次の各選択肢のうちから一つずつ選べ。 選択肢 ⑩a > 1 ① a ≦1 I の選択肢 ⑩6 > 1 ① b≦1 の選択肢 ⑩ -α <-1 ① a ≧ - 1

回答募集中 回答数: 0