学年

教科

質問の種類

物理 高校生

高校物理 電気の問題です (5)で静電エネルギーの変化を見る時合成容量から求めてはいけないのでしょうか 合成容量から求めたら答えが変わったのですが、計算ミスなのかどうかがわかりません

17-7700 E2 701 位差を求めよ。 (3)続いて, S2 を開き, S, を閉じた。 十分に時間が経過した後, S, を開きSを閉じた。さら に十分に時間が経過した後の, C2 の両端の電位差を求めよ。 (4)この後,(3)の操作をくり返すと, C2の両端の電位差はある有限な値に近づく。 その値を 求めよ。 〔17 大阪市大〕 113. 〈ダイオードを含むコンデンサー回路とつなぎかえ〉 図に示す回路において, ダイオード1および ダイオード2は理想的な半導体ダイオード (順 方向電圧が加えられたときの抵抗値は 0, 逆方 向電圧が加えられたときの抵抗値は無限大) と みなせる。 電池1および電池2の起電力はいず れも E[V],コンデンサー1およびコンデンサ 2の電気容量はそれぞれ C〔F〕 および 2C[F], 抵抗器の抵抗値は R [Ω] である。電池 コンデンサー 1 d ダイオード 1 コンデンサー 2 抵抗器 e 電池 1 木ダイオード 2 S b 電池2 の内部抵抗および導線の抵抗は無視でき, 回路から放射される電磁波はないものとする。 コンデンサー1およびコンデンサー2に電荷が蓄えられていない状態でスイッチSをa側 に入れ、十分に時間を経過させた。 このときの (1) 点c, 点d, 点eの電位 [V] をそれぞれ求めよ。 (2) コンデンサー1およびコンデンサー2に蓄えられた静電エネルギー [J] をそれぞれ求め よ。 次にスイッチSをa側から離してb側に入れ,十分に時間を経過させた。このときの, (3) コンデンサー1の点d側の極板に蓄えられた電気量と, コンデンサー2の点d側の極板 に蓄えられた電気量の和 〔C〕 を求めよ。 (4) コンデンサー1およびコンデンサー2に蓄えられた電気量 〔C〕 をそれぞれ求めよ。 5) スイッチSをb側に入れた瞬間から十分な時間が経過するまでに抵抗器で消費されたジ [ュール熱 〔J] を求めよ。 [24 芝浦工大] .B 114. 4枚の導体板によるコンデンサー回路> 応用問題 次のア~ス、ソ~チの中に入れるべき数や式を求めよ。 また,セに当てはま 文章を解答群から選べ。ただし、数式はC,V,dのうち必要なものを用いて答えよ。

回答募集中 回答数: 0
生物 高校生

生物の遺伝子です。(4)が全く分かりません!どうやって解くんですか!教えてください🙏🙏

○ 独立と連鎖 6 独立と連鎖 ... 同じ遺伝子座の対立遺伝子4組に着目し,それらをAa, Bb, Ee, Ff と表記するものとする (A, B, E, F は顕性遺伝子, a, b, e, fは潜性遺伝 子)。顕性のホモ接合体と潜性のホモ接合体を交配して F をつくり,さらに,この F」を検定交雑して得られた子について一部の表現型を詳しく調べたところ, 次の分 離比であることがわかった。 Aa と Bb の組み合わせについては, [AB]: [Ab]: [aB]:[ab] Bb と Ee の組み合わせについては, [BE]:[Be]:[bE]:[be] Aa と Ee の組み合わせについては, [AE]:[Ae]:[aE]:[ae] - = 3:1:1:3 9:1:1:9 = 17:33:17 Aa と Ff の組み合わせについては, [AF]: [Af]: [aF]: [af] = 1:1:1:1 at to (1) ① Aa と Bb, ② Bb と Ee, ③ Aa と Ee, ④ Aa とFfの組み合わせについて, それぞれの組換え価を求めよ。 (2) ① Bb と Ff, Ee と Ff の組み合わせについて, 組換え価はそれぞれどうなるとB 予想されるか。 = (3)遺伝子 Aa, Ee, Ff の中で,遺伝子 Bb と, ① 連鎖しているもの, ② 独立してい 4EF るものはどれか。 それぞれすべて答えよ。 (4) F,個体どうしをかけあわせた場合に生まれる子の Aa と Bb の組み合わせについ て,表現型の分離比[AB]: [Ab]:[aB]:[ab] はどうなるか。 41:7:7:9 [20 関西学院大] AE F

回答募集中 回答数: 0
地理 高校生

「家庭科 充実した生涯へ」からお聞きしたいです 《介護を担う人にはどのような課題があるか。P62を参考に130字程度で説明しない》について教えてください

1 は 加入 から 在 択 人 ン 護 柄 調査」) 22.9% 16.2% 5.4% 5 介護を担う人 介護は,だれがどのように担っているのだろうか。介護する) 要介護者と同居の人が約50%を占め、別居の家族や、 の専門家の割合が、それぞれ約10%強となっている。 事業者な また。 する人を性別にみると, 女性が約70%, 男性が約30%である。 れまでは女性が圧倒的多数を占めていたが,近年男性介護者の態 も増加している (7) さらに、近年、平約者会の使者向が胎児の使用度の水着から そうろうかいご にんにんかい 介護が必要になる年齢も高くなる傾向がある。 それにともなっ 護にあたる人の年齢も高くなり、 老老介護や認認介護と呼ばれるよ うな現象が起こっている。今後は、本部の書店で、別居家族が に介護にあたる場合も増加するだろう。同時期に子育てと介護と。 両方を担うダブルケアの課題も見過ごせない。 6 介護の社会化と介護保険制度 介護が必要となった高齢者を,家族とともに社会全体で支えて いく「介護の社会化」をめざす介護保険が,2000年から導入された その目標は,高齢者自身の自己決定の尊重であり、介護を必要とす る人が自分で必要なサービスなどを選択しつつ,自立的な日常生活 を営めるように支援する社会的なしくみである。 介護保険制度は,市区町村が保険者となり、日本に住所をもつ 40歳以上の人は被保険者として月々保険料を支払うしくみである いきほうかつえん ③ ようかいご (8)。サービスを受けるには, 市区町村などに申請し要介護認定を 受ける。 要支援と認定された場合は,地域包括支援センターととも に介護予防プランを立て介護予防サービスを利用する。 要介護と認 定された場合は,介護支援専門員(ケアマネジャー) とケアプラン を立て介護サービスを利用する。 介護を必要とする高齢者本人、家 族もまじえて本人の希望をできるだけかなえるよう協議がおこなわ れる。 サービスを受ける際には費用の1~3割を負担する。 かいごぼう 0 近年は介護予防に重点が置かれるようになっており, 体力をつけ 口と歯の健康を守る, 健康を保つ食事の工夫など、できる限り 介護を必要としない状態を保つ対策が展開されている。 7 高齢 大事で ない。 のな す大 介護 性が P に おこなう試験に合格し、所定の実務研修を終了 ケアプラン(介護サービス利用計画の作成 支援専門員 都道府県知事指定の スの調整などをおこなう。

回答募集中 回答数: 0
数学 高校生

(2)(3)の違いがよく分かりません。右ページの➗3! をする理由を読んでもまったく分かりません。誰か教えて欲しいです

372 基本 例題 25 組分けの問題 (2) ・組合せ 0000 9人を次のように分ける方法は何通りあるか。 (1)4人,3人, 2人の3組に分ける。 (2)3人ずつ, A, B, C の3組に分ける。 (3) 33組に分ける。 る 東京 (4)5人、2人, 2人の3組に分ける。基本21 指針 組分けの問題では,次の① ② を明確にしておく。 ①分けるものが区別できるかどうか ②分けてできる組が区別できるかどうか 「9人」は異なるから, 区別できる。 ...... 特に,(2) と (3) の違いに注意。 (1) 3組は人数の違いから区別できる。 例えば, 4人の組を A, 3人組をB, 2人の 組をCとすることと同じ。 (2)組に A,B,Cの名称があるから, 3組は区別できる。 (3)3組は人数が同じで区別できない。 (2) で, A, B, C の区別をなくす。 →3人ずつに分けた組分けのおのおのに対し,A,B,Cの区別をつけると,異な る3個の順列の数 3! 通りの組分け方ができるから,[(2) の数]÷3! が求める方 法の数。 (4) 2つの2人の組には区別がないことに注意。 なお,364 基本例題21との違いにも注意しよう。 (1)9人から4人を選び, 次に残った5人から3人を選ぶ 解答 と,残りの2人は自動的に定まるから, 分け方の総数は 9C4X5C3=126×10=1260 (通り) (2) Aに入れる3人を選ぶ方法は 3-(A-8) C3通り Bに入れる3人を, 残りの6人から選ぶ方法は 6C3通り Cには残りの3人を入れればよい。 したがって, 分け方の総数は 9C3 × 6C3=84×20=1680 (通り) 2人,3人,4人の順に選 (1) 八郎(S) んでも結果は同じになる。 4×53×2C2としても 同じこと。 (2),A,B,Cの区別をなくすと、 同じものが3!通 次ページのズーム UP 参 りずつできるから、分け方の総数は (9C3 × 6C3)÷3!=1680÷6=280 (通り) (4)A(5人),B(2人), C (2人) の組に分ける方法は 9C5×4C2 B,Cの区別をなくすと、 同じものが2! 通りずつでき るから,分け方の総数は (9C5×4C2)÷2!=756÷2=378 (通り) 照。 <次ペ 本

回答募集中 回答数: 0
数学 高校生

(2)(3)の違いがよく分かりません。右ページの➗3! をする理由を読んでもまったく分かりません。誰か教えて欲しいです

372 基本 例題 25組分けの問題 (2) ... 組合せ 9人を次のように分ける方法は何通りあるか。 (1)4人,3人,2人の3組に分ける。 (2)3人ずつ,A, B, Cの3組に分ける。 (3) 3人ずつ3組に分ける。 (4)5人2人、2人の3組に分ける。 0000 [類 東京経 基本21 「9人」は異なるから、区別できる。 指針 組分けの問題では,次の①,②を明確にしておく。 ①分けるものが区別できるかどうか ②分けてできる組が区別できるかどうか ****** 特に,(2)と(3)の違いに注意。 (1) 3組は人数の違いから区別できる。 例えば, 4人の組を A, 3人の組をB, 2人の 組をCとすることと同じ。 (2)組に A,B,Cの名称があるから, 3組は区別できる。 (3)3組は人数が同じで区別できない。 (2) で, A,B,Cの区別をなくす。 →3人ずつに分けた組分けのおのおのに対し,A,B,Cの区別をつけると、果た る3個の順列の数 3! 通りの組分け方ができるから,[(2) の数]÷3! が求める 法の数。 (4)2つの2人の組には区別がないことに注意。 なお, p.364 基本例題21との違いにも注意しよう。 解答 (1)9人から4人を選び, 次に残った5人から3人を選ぶ と、残りの2人は自動的に定まるから, 分け方の総数は 9C4×5C3=126×10=1260 (通り) ei (2)Aに入れる3人を選ぶ方法は 9C3通り Bに入れる3人を, 残りの6人から選ぶ方法は C3通り Cには残りの3人を入れればよい。 したがって, 分け方の総数は C3X6C3=84×20=1680 (通り) 2人,3人,4人の順に (1) んでも結果は同じになる C4X5C3×2C2としても 同じこと。 (2)で,A,B,Cの区別をなくすと, 同じものが3! 通 次ページのズームUP りずつできるから、分け方の総数は (9C3X6C3)÷3!=1680÷6=280 (通り) (4)A(5人),B(2人), C (2人) の組に分ける方法は C5×42通り B,Cの区別をなくすと,同じものが2! 通りずつでき るから,分け方の総数は (9C5X4C2)÷2!=756÷2=378 (通り) 照。 次ページのズーム 例

回答募集中 回答数: 0
数学 高校生

アとウの問題の最後って逆の確認はしなくていいんですか?

8 恒等式 - (ア) 恒等式 4+7x3-32-23-14 =a+bx+cx(x-1)+dx(x-1)(x-2)+ex(x-1)(x-2)(x-3) が成り立つとき, 定数ae の値を求めよ. (九州産大・情報科学, 工) (イ) 次の式がxについての恒等式になるように,定数a, b, c の値を定めなさい。 x3+2x2+1=(x-1)+α(x-1)2+6(x-1)+c ( 流通科学大) (ウ) x+y=1を満たすx, yについて,ax2+bxy+cy2=1が常に成り立つように a, b, c を定めよ. (龍谷大・理工(推薦)) 係数比較法と数値代入法 多項式f(x) g(x)について, f (x)=g(x) が恒等式になる条件を とらえる主な方法は,次の①と②の2つである. 1 f(x)とg(x)の同じ次数の項の係数がすべて等しい. ② f(x), g(x) の (見かけの) 次数の高い方をn次式とするとき, 異なる n+1個の値に対して,f(x)=g() が成り立つ. x-pで展開 (イ)の右辺を 「x-1について展開した式」 というが, どんな多項式も につい て展開した式として表すことができる. この形にすれば (x-p)2で割った余りなどがすぐに分かる. (イ)を右辺の形にするには, 左辺の各項を,r={(x-1) +1}などとして展開すればよい. 等式の条件 1文字を消去するのが原則である(本シリーズ 「数Ⅰ」 p.16). 解答豐 (ア) 与式の両辺にx=0を代入して,a=-14. αを移項し両辺をxで割って, x3+7x2-3x-23 =b+c(x-1)+d(x-1)(x-2)+e(x-1)(x-2)(x-3) 両辺に x=1,2,3,0を代入して, -18=6,7=b+c,58= 6+2c+2d, -23=b-c+2d-6e b=-18,c=25, d=13, e=1 (イ)x+2x2+1={(x-1)+1}3+2{(x-1)+1}2+1 ={(x-1)+3(x-1)2+3(x-1)+1}+2{(x-1)2+2(x-1)+1}+1 =(x-1)+5(x-1)2+7 (x-1)+4 (α=5,b=7,c=4) (ウ) y=1-xであるから, ax2+bx (1-x)+c(1-x)2=1 これがェによらず成り立つから,r= 0, 1, -1 を代入して, c=1, a=1, a-26+4c=1 .. a=1,c=1,6=2 注 (ア) ①x=1を代入して♭を求め, bを左辺に移項し両辺をx-1 で割る'代入'と '割り算’を繰り返して求めることもできる. (イ)与式にx=1を代入し,c=4. 両辺をxで微分して, 3x2+4x=3(x-1)2+2a(x-1)+b.x=1を代入し, 6=7. (以下略) ・① 多項式の恒等式が両辺ともにェ を因数に持てば, 両辺をェで割っ た式も恒等式. e=1であることは、 元の式の両 辺のの係数を比べることでも 分かる.このような考察をして ミスを防ごう. ← (x+y)²=1となる. 次にx=2を代入してcを求め,c を移項して2で割る. ←代入と微分"を繰り返して 求めることもできる. 波調

回答募集中 回答数: 0
化学 高校生

問3途中式教えてください 2枚目です

rの正 ると 入試攻略 への必須問題】 金属セシウム Cs の結晶の単位格子は体心立方格子である。 セシウム原 子は剛体球とし、 最近接のセシウム原子どうしは接触しているとする。 √2≒1.41,√3 ≒ 1.73, 円周率 3.14 として,次の問いに答えよ。 問1 単位格子に含まれる原子の数を書け。 問2 セシウムの結晶の充填率 [%] を有効数字2桁で求めよ。 問3 単位格子の1辺を6.14×10cmとし,セシウムの結晶の密度 g/cm² を有効数字2桁で求めよ。 アボガドロ定数は 6.0×1023 〔/mol], Csの 原子量は 133 とする。 (東北大) 解説 問1 体心立方格子 配位数 8 です 1辺αの立方体の中に半径の球体 の原子が2個含まれているので,充填率 p 〔〕 は, 半径1の球2個分の体積 立方体の体積 x100 πr3x2 3 a³ X100 に \3 r = π ② 3 1 [個分〕 ×8+1 [個]=2 [個] 8 頂点 立方体の中心 問2 半径をr, 立方体の1辺の長さ をα とすると, αとの関係は, ← √2a √a² + (√2a)² = 4r 47 637) よって、 34 となります。 23 …① ・ななめ x2x100 ①式を②式に代入すると, b=117 (√3) ³×2×100 p= 8 ≒67.9... [%] 問3 Csの密度 [g/cm²〕 Cs 2個分の質量 〔g〕 = elge と 単位格子の体積 〔cm〕 Cs 原子1個の質量 133 6.0×1023 ×2 (g) (6.14×10-6)3[cm] ≒1.91(g/cm あちに ななめの 答え 問1 2個 問2 68% 問3 1.9g/cm²

回答募集中 回答数: 0