学年

教科

質問の種類

数学 高校生

二つの2次方程式をイコールで結んでそれを判別式Dとして共通の解を持つからD=0としてはいけない理由はなんですか?教えてくだい!お願いします!!!!

を早く ハイスクー A-104-56 重要 例題 102 2次方程式の共通解 00000 2つの2次方程式 2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数の値を定め、その共通解を求めよ。 基本的 指針 2つの方程式に共通な解の問題であるから,一方の方程式の解を求めることができ たら,その解を他方に代入することによって、 定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では,次の解法 が一般的である。 41212 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると 2a2+ka+4=0 ...... ①, a2+α+k=0 ② これをαについての連立方程式とみて解く す ②から導かれる k=--α を ①に代入(kを消去)してもよいが、3次方程式と なって数学Ⅰの範囲では解けない。 この問題では、最高次の項である2の項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=αとおく 171 (7) T 3章 12次方程式 共通解をx=αとおいて, 方程式にそれぞれ代入すると 2a+ko+4=0 ...... ①, a2+α+k=0……… 解答 ①-② ×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 k=2 または α=21 [1] k=2のとき よって αの項を消去。この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 2つの方程式はともに x2+x+2=0となり、この方程式 数学Ⅰの範囲では、 の判別式をDとすると D=12-4・1・2=-7 D<0 であるから,この方程式は実数解をもたない。 ゆえに,2つの方程式は共通の実数解をもたない。 x²+x+2=0の解を求め ることはできない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x26x+4=0, x2+x-6=0 すなわち2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 α=2を①に代入しても よい。 よって、2つの方程式はただ1つの共通の実数解 x=2 以上から 共通解はx=2 =-6, 注意 上の解答では, 共通解 x=α をもつと仮定してα やんの値を求めているから 求めた値に対して,実際に共通解をもつか、または問題の条件を満たすかど うかを確認しなければならない。 共通解としてもつとき, 実数の定数kの値は 2つの2次方程式x2+6x+12k-24=0, x2+(k+3)x+12=0がただ1つの実数を であり,そのときの共通解は p.173 EX73 である。

解決済み 回答数: 1
数学 高校生

アとイは分かったのですが、ウとエが分からないので教えてほしいです。

A. a (@daM) 数 学 次のⅠ、Ⅱ、Ⅲ, Vの設問について問題文の にあてはまる適当なものを, 解答用紙の所定の欄に記入しなさい。 I 虚数単位をiとし, n を正の整数とする。 A, B を複素数でいずれも0でないも のとし,n次の整式P, (z)を 3 Pw(z) = Az"-B と定める。 ただし, 0でない複素数zを極形式でz = p (cos0+isin 0 ) と表すと きは,p>0 かつ偏角が 0≦6 < 2 の範囲となるように答えよ。 〔1〕 A, B をそれぞれ極形式で表したとき, x=41=2 AZ-B=0 A = r (cosa + i sin a) B = s (cos β +isin β) AZ-BZ=2/ とする。 ただし,r>0 かつs > 0 かつ 0≦a≦β <2" とする。 このとき,r,s,α βを用いて1次方程式 Pi (z)=0の解z を極形式で 表すと P2(2) W= √ A = 20 ア {cos イ ) +isin (イ)} 101515 となる。 ß-a ß-a n次方程式 P (z)=0のn個の解を wo, W1, ..., wm-1 とする。 ただし, k=0, 1, ...,n-1に対してwkの偏角を0kとしたとき <<< 01-1 <2πであるとする。 このとき,r,s, a, B, k,n を用いてw (k=0, 1, ...,n-1) を極形式で表すと エ +isin I ウ COS ■)} = Wk となる。 3次方程式 P3(z)=0の3つの解wo, W1, w2 が複素数平面上で表す3つ の点を頂点とする三角形の面積をSとする。A,Bがそれぞれla-il = 1/ -1- (Mab(3) 一人 入 x+x 1-4 K 0 2.-2

解決済み 回答数: 1
数学 高校生

数Iの黄チャートの例題79の(1)のところで、写真の青で線をひいているところがなぜこうなるのかがわかりません。解説よろしくお願いします🙇‍♀️

基本 例題 79 実数解をもつ条件 (2) 00000 (1)xの2次方程式(m-2)x2-2(m+1)x+m+3=0 が実数解をもつよう に定数 m の値の範囲を定めよ。 CA (2) x の方程式(m+1)x2+2(m-1)x+2m-5=0がただ1つの実数解をも 定数 m mの値を求めよ。 つとき, CHART & SOLUTION MOITUJO 基本 78 方程式が実数解をもつ条件 (2次の係数) ≠0 ならば 判別式 D の利用 (1) 「2次方程式」 が実数解をもつための条件は D≧0 (2)単に「方程式」 とあるから, m+1=0 (1次方程式) の場合と m+1≠0 ( 2次方程式) の場合に分ける。 解答 (1) 2次方程式であるから m-2≠0 2次方程式の判別式をDとすると よって m+2 D ={-(m+1)}2-(m-2)(m+3)=m+7 4 2次方程式が実数解をもつための条件は D≧0 であるから 26′ 型であるから, D 2=b^2-ac を利用する。 4 m+7≥0 よって m≧-7 ゆえに -7≤m<2, 2<m ←m≠2 かつ m≧-7 (2) [1] m+1=0 すなわち m =-1 のとき -4x-7=0 A -7 2 m よって, ただ1つの実数解 x=-- をもつ。 4 7 [2] m≠-1のとき 方程式は2次方程式で, 判別式をDとすると D =(-1)2-(m+1)(2m-5)=-m²+m+6 2次方程式がただ1つの実数解をもつための条件は 判別式が使えるのは, 2次方程式のとき。 ← 2次方程式が重解をも D=0 であるから -m²+m+6=0 つ場合である。 よって これを解いて (m+2)(m-3)=0 0-A-01 jar m=-2,3 これらはmキー1 を満たす。 以上から、 求める m の値は 8 m=-2,-1,3

解決済み 回答数: 1
数学 高校生

この問題の(1)なんですが、なみ線を引いた 「重解は、x=-a/2より、」をどうやって導き出すかが分かりません!解説してくださると嬉しいです。宜しくお願いいたします🙇

118 第2章 高次方程式 Think 例題 62 3次方程式と実数解 **** αを実数の定数とする. 3次方程式 x+(a-1)x2+(a-3)x-2a+3=0 について、 次の問いに答えよ. (1) 重解をもつように, 定数αの値を定め、そのときの重解を求めよ、 (2)異なる3つの実数解をもつように、定数a の値の範囲を定めよ 考え方 まずは、次数の最も低いαについて整理し 解答 (xの1次式)×(xの2次式) の形に因数分解する. (1)「2次方程式の解が、1次方程式の解を含む」場合と,「2次方程式が重解をもっ 場合の2通りが考えられる. (2)2次方程式が異なる2つの実数解をもち、かつ2次方程式の解が1次方程式の帰 を含まない場合である. (1) f(x)=x3+(a-1)x2+(a-3)x -2a+3 と する. a について整理すると, 次数の低い文字 a 整理 f(x)=x+(a-1)x2+(a-3)x-2a+3 =(x2+x-2)a+x-x-3x+3 数分解する. f(1)=1°+(a-1)12 =(x+2)(x-1)a+x2(x-1) +(a-3)・1−2a+3= 0 -3(x-1) =(x-1){(x+2)a + x2-3} より, f(x) は x-1 を因数に もつ. =(x-1)(x2+ax+2a-3) f(x) =0 とすると, x-1=0 または x2+ax+2a-3=0 したがって,f(x)=0が重解をもつのは, 次の2通りの場合である. (i) x2+ax+2a-3=0 がx=1 を解 にもつ (ii) x2+ax+2a-30 が 重解をもつ (i) のとき, x=1 が解であるから, これを利用して因数分解しても よい。 組立除法 11 a-1 a-3-2a+3 1 a 2a-3 10 1 a 2a-3 (i)のとき, x+ax+2a-3=0 の判別式を 2 12+α・1+2a-3=0 より a=- x=1 が重解 3 残りの解は, 5 x2 (x-1)x+ =0 -= 0 を解いて Dとすると,重解をもつのでD=0である。 +123x-/3/3 CMD=a²-4(2a-3) =a²-8a +12 =(a-2)(a-6) より, したがって (a-2)(a-6)=0 a=2.6 53 重解は,x= より a 2 をもつとき,x=- a=2のとき, x=-1 a=6 のとき, x=-3 の重解を求める. より,x=- ax2+bx+c=0 (α0) が重 b 2a a=2, a=6 のそれぞれの場 残りの解は,どちらもx=1

解決済み 回答数: 1