学年

教科

質問の種類

数学 高校生

285番の解答の赤線部について、点Hの極座標が(1,π/3)というところからなぜ突然極方程式が求められるのかがわかりません。どのような過程があるのでしょうか

B問題 285 (1) * 点A(2,0)を通り, 始線とのなす角が 5 極座標に関して,次の直線の極方程式を求めよ。 (4) ①をx2+y2-4x=0 に代入すると recos20 +12sin204rcos0=0 すなわち よって (cos20 + sin20)-4rcos0= 0 rr-4cos0)=0 したがって r = 0 または r=4cose = 0 は極を表す。 また, r=4cose は極座標が (20) である点を中心とし, 半径2の円を表 す。 これは極を通る。 よって, 求める極方程式は r=4cose 別解 (4) 方程式を変形すると (x−2)2+y2=4 この方程式が表す円の半径は2で,中心の極座 標は (2,0)である。 よって, 求める極方程式は r=4cos0 283 曲線上の点P(r, 0) の直交座標を(x, y) とす ると rcos0=x, rsin0=y, r2=x2+y2 ...... (1) 極方程式v=cos0+sin0 の両辺にrを掛け ると r2=rcos0+sin 0 ) すなわち re=rcos0+rsin0 これに.① を代入して1, 0 を消去すると x2+y2=x+y x2+y²-x-y=0 よって 参考 +nz 曲線r= cos0 + sin0は極 (01/27) (nは整数) を通るから, y = cos0+sin の両辺 にを掛けても同値である。 (2) cos20 = cos20 sin' 0 から y2(cos20-sin20)=-1 すなわち (rcos0)-(rsin0)=-1 これに ① を代入して, 0 を消去すると x²-y²=-1 ↑ の直線 したがって 4(x2+y^2)=x2+6x+9 284 放物線上の点P の極座標を(r, 0) と し, Pから準線ℓに 下ろした垂線を PH とすると Y= 285 (1) 極0からこの 直線に下ろした垂線を OH とする。 右の図か ∠AOH= 3x²+4y²-6x-9=0 OP= PH ここで, OP=r, PH=3-rcos であるから r=3-rcos 8 よって, 求める放物線の極方程式は 3 1+ cos 20 2 IC 3 TC 6 解答編 = O 0 (2) 極0からこの直線に 下ろした垂線を OH, 直線と始線の交点を P OH-OAcos-2.1/28-1 =1 よって, 点Hの極座標は 1, したがって、求める極方程式は rcos (0-3)=1 B(1.4) H A l -69 X

回答募集中 回答数: 0
数学 高校生

東工大数学 採点していただきたいです。 途中まで(ノートの左下)で間違えています 50点中何点もらえますか?

24 する。 辺ABを xl-x (0≦x<l) の比に内分する点Pと,辺ACをy: l-y (0≦y<1> の比に内 分する点Qをとり、線分BQ と線分 CP の交点をRとする。 このとき, RがAM に含まれるような (x,y) 全体をxy平面に図示し, その面積を求めよ。 (ただし、道 AB. 辺ACを0:1の比に内分する点とは,ともに点Aのこととする。) 2003年度 (3) △ABCにおいて, 辺ABの中点をM. 辺ACの中点をとする。 ポイント 前半は、平面ベクトルの典型問題である。 平面上のどのようなベクトルも その平面上の2つのベクトルa, a≠0. b=0, ax b) を用いて, Bb (a. B は実数) の形に表されること, そしてその表し方は1通りであることは重要な事実であ る。また、△ABCの間および内部にある点Pは, AP=αAB+ BAC (a+β≦1,420 B20) で表されることもマスターしておくべき基本事項である。 520) 不等式の表す領域の図示と面積を求めるための定積分計算である。 解法 △ABQにおいて, AQ=yAC (0≦y<1) であるか ら,実数s を用いて AR = (1-s) AB+syAC (0≦s≦1) ...... ① と表せる。 また, ACP において, AP=xAB (0≦x<1) であるから実数を用いて AR=AB+(1-1) AC (0≦t≦) ....... ② と表せる。 ABとACは1次独立 (AB AC. MEAN AB≠0. AC ±0) なので ①②より したがって. ①より AR=(1-1-4) AB+1-5 1-xy ここで -xyAC= x (1-y) 1-xy B 1-s=tx, sy=1-1 が成り立つ。 0≦x<1,0≦y<1に注意して, この2式からtを消去すると 1-1 E'S (1-x) -AB + Level B M O P _y(1-x) -AC 1-xy x(1-y) 1-xy とおくと AM= y (1-x) 9= 1-xy AM-AR AN-ACCA& AR=pAB+qAC=2pAM+2qAN となり、点Rが△AMN に含まれるためには xy- 2p+2q≦1④ が成り立つことが必要十分である。 ③を用いると, ④ ⑤ はそれぞれ y(1-x)206 1-xy x+y-2xy=-xy = 1-xy 0≦x<1,0≦y<1より. ⑤'は成り立つ。 また, 0≦x<1,0≦y<1に注意して, ④'を変形す ると よって, 0≦x<1,0≦y<1のもとで, ④’を満たす 点(x,y)をxy平面に図示すると、右図の斜線部 分(境界はすべて含む)になる。 すなわちy=1/1 23 2p20. 2q205062 [注]不等式 (x-2)(x-2/31) 2010/19 リー = x (1-y), -≥0. 1-xy 5- £² (1.-7. 3) 4 S= 9 2 ---- (10)+ §3 平面図形 129 UN + 1/23 を描く。 次に、この境界線で区切られた3つの部分の1つを選 y= の表す領域を図示するには、まず境界線 (x-2)(x-2)=1/ *3 び、その中の1つの点の座標を不等式に代入してみて、成り立てばその点を含む部分に 斜線を施し(同時に境界線をまたいだ隣の隣にも斜線を施す)。 成り立たなければ隣の 部分に斜線を施す。 正領域∫ (x,y) > 0.負領域f (x,y) <0は境界線をまたいで交互に 現れることを利用するのである。 さて 求める面積をSとすると

回答募集中 回答数: 0
物理 高校生

この2番の問題なぜ、eがマイナスになるんですか?ほかの問題でプラスになったりマイナスになったりしてわけがわかりません

(3) Step 1 解答編 p.246~247 陰極線 次の文の[ □に適当な語句を入れよ。 電極を封入したガラス管に低圧の気体を入れ,高電圧をかけて放電させる。 ③には,(1)物体によっ ②極の反対側のガラス管壁が蛍光を発する。 これは② コや磁界によって 体の圧力が数 kPa 程度であると、管内の気体が ① する。一方,10Pa以下の圧 力の放電管では, から出る ③がガラスに当たって生じるものである。 ④性) (2) ⑤ 電荷を運ぶ (3) ⑥ て遮られ、影ができる 曲げられる, などの性質がある。 トムソンは3③⑦を測定した。後に ③の正体は⑧の流れであることがわかった。 ② 電子に生じる加速度 右図のように間隔dの平行極板間に電 圧をかける。質量m/電気量-d(≪0)の電子を極板に平行 に入射したときの電子の加速度の大きさと向きを求めよ。 43 d D 3 電子の比電荷と加速度間隔が0.10m だけ離れた平行極板に, 2.0×10Vの電 e €₁ m をかけた。この極板間に置かれた電子 (比電荷 度の大きさは何m/s2 か。 + + + m, -e ? ミリカンの実験空気中に, 2枚の平行板電極を、上下に間隔dだけ離して水平に 置き,電圧Ⅴをかけた。この極板間に質量の電気量帯電した油滴を入れる と,油滴は一定の速させて上昇した。このときの力のつり合いの式を書け。ただし、 油滴が受ける空気の力は油滴の速さに比例し(比例定数k) 重力加速度の大き さをgとする。 64 V 3 3.5×10¹ m/s² ④ mg+kv-q d ⑥ 粒子性 (1), (4) 波動性 (2)(3) 268 第V部 原子分子の世界 D-0 ⑤ 光量子波長が 6.0×10mの光子1個のエネルギーと運動量の甘さを求めよ。 ただし, プランク定数を 6.6 × 10734 J's, 光速を3.0×10°m/s とする。 11,26 1/76×10 [C/kg]) に生じる無 Q ⑥ 粒子性と波動性 (1)光電効果 (2) ラウエ斑点 (3) ブラッグの条件 (4) コンプトン効 果は,光やX線の粒子性と波動性のどちらに関係が深いか。 8,16,23,24,25.26 答 ①①発光 ②陰 ③陰極線 ④直進 ⑤ 負 ⑥電界 ⑦比電荷 ⑧電子 ② eV md' =0 ⑦ 物質波速さ 3.0×10°m/sで運動している電子の物質波の波長は何mか。 ただい 電子の質量を9.1×10 -31 kg, プランク定数を6.6 x 10 J's とする。 Na 34 274 u 2.4×10-10m 3.3×10-19 J, 1.1×10-27kg・m/s 例題 93 右図の光 変えて実験 電効果が走 数をn (1) 金属木 (2) 波長 ギーの (3) 波長 UT 上向き 陰極線の粒- 光 eを用 SP 問 (1) 入 〔 が起こ の光子 に相当 (3) 「電 れなく のほ 電子 ネル り、 動エ が小 流は ( 光の粒 E=h_ 光電効 の運動 Ko, 光 仕事関 Ko=

回答募集中 回答数: 0