学年

教科

質問の種類

数学 高校生

写真の質問に答えてください。

516 18 約数と倍数,最大公約数と最小公倍数 CATE 基本事項 1 約数 倍数 き,bはaの 約数 であるといい, αは6の倍数であるという。 ② 倍数の判定法 2の倍数 5の倍数 3の倍数 ③ 素数と素因数分解 2つの整数α, bについて, ある整数kを用いて, a=bk と表されると 一の位が偶数 ( 0 2, 4, 6, 8 のいずれか) 一の位が05 のいずれか 4の倍数 9の倍数 各位の数の和が3の倍数 下2桁が4の倍数 各位の数の和が9の倍数 ① 2 以上の自然数のうち, 1とそれ自身以外に正の約数をもたない数を素数とい い,素数でない数を合成数という。 1は素数でも合成数でもない。 ② 整数がいくつかの整数の積で表されるとき,積を作る1つ1つの整数を,もとの 整数の 因数 という。素数である因数を素因数といい, 自然数を素数だけの積の 形に表すことを素因数分解 するという。 4 約数の個数, 総和 自然数 N を素因数分解した結果がN=pager…………. であるとき, Nの正の約数の個数は (a+1)(b+1)(c+1)...... ←基本例題 8 参照。 総和は (1+p+...+pª)(1+q+···+q°)(1+r+...+rº) ...... 解説 ■ 約数, 倍数 a=bk のときa=(-6) (-k) であるから, bがαの約数ならばーも αの約数である。 また, すべての整数は0の約数であり, 0 はすべて の整数の倍数である。 なお, 0 がある整数の約数となることはない。 ■倍数の判定法 [4の倍数の判定] 正の整数Nの下2桁をaとすると, 負でないある整 数kを用いて, N=100k+α=4・25k+α と表される。 よって、Nが4の倍数であるのは, αが4の倍数のときである。 [3の倍数 9の倍数の判定] 例えば, 3桁の正の整数Nを N = 100α+106+cとすると, N=(99+1)a+(9+1)6+c=9(11a+b)+(a+b+c) であるから, a+b+cが3の倍数であればNは3の倍数であり, a+b+cが9の倍 数であればNは9の倍数である。 4桁以上の場合についても同様。 ■素因数分解の一意性 合成数は, 1 とそれ自身以外の正の約数を用いて, いくつかの自然数 の積で表すことができる。 それらの自然数の中に合成数があれば,そ の合成数はまたいくつかの自然数の積に表すことができる。 このような操作を続けていくと,もとの合成数は, 素数だけの積にな る。 よって, 合成数は、 必ず素因数分解でき 注意 以後,約数や倍 整数の範囲 ( 0 や 数は, 負の数も含む) で考え る。 <0は0=60 と表さ れるから 60 の 約数であり, 06 の倍数である。 4の倍数の判定法は、 「下2桁が4の倍数 または 00」と示され ることもある。 本書 では, 00の表す数は 0 であるとみなして 4の倍数の中に含め ている。 例えば,210=6・35 と表すことができる が6=2・3.35=5・7 から 2102・3・5・7 to 110 約数と倍数 00000 aとbがともに3の倍数ならば, 7a4bも3の倍数であることを証明せよ。 は0でない整数とする。 P.516 基本事項 がともに整数であるようなαをすべて求めよ。 40 aが6の倍数で,かつbがαの倍数であるとき, αを6で表せ。 ■ 「αがもの倍数である」ことは, 「bがαの約数である」 ことと同じであり,このとき,整数kを用いて a=bk と表される。このことを利用して解いていく。 (2) αは5の倍数で,かつ40の約数でもある。 bが3の倍数であるから, 整数k, lを用いて a=3k, b=3l と表される。 a=bk Laは6の倍数 7a-46=7・3k-4・31=3(7k-4L) よって 7k-4lは整数であるから, 7a-46は3の倍数である。 (②2) 1/3が整数であるから,αは5の倍数である。 ゆえに,kを整数としてα=5kと表される。 よって 40 40 8 a 5k k 40 が整数となるのは, kが8の約数のときであるから a k=±1, ±2, ±4, ±8 したがって a=±5, ±10, ±20, ±40 と表される。 (3) αが6の倍数, bがαの倍数であるから 整数 k lを 用いて a=bk, b=al a=bk を b=al に代入し, 変形すると 60 であるから kl=1 k, lは整数であるから k=l=±1 したがって a =±b bαの数 b(kl-1)=0 整数の和差積は整数 である。 a=5k を代入。 517 負の約数も考える。 α=5kにの値を代入。 を消去する。 <k.lはともに1の約数で 110 (ア) a,bがともに4の倍数ならば、' +62は8の倍数である。 の倍数で 断ならば、cdはabの約数である。 (1) 次のことを証明せよ。 ただし, a,b,c,d は整数とする。 4 章 倍数の表し方に注意! だったら a=tbl= 数であるから, のように別の文字 (k, lなど) を用いて表さなければなっない 上の解答ので, lを用いずに, 例えば (1) で α=3k, b=2のように書いてはダメ! これではα=6となり, この場合しか証明したことにな なるのですか? 1989 約数と倍数、最大公約数と最小公倍数 と書く f 2432115) 214-191

解決済み 回答数: 1
数学 高校生

【1】や【2】の最後の ーーーは整数であるから、n^2は3の倍数ではない。(①) は2枚目の写真のように、 よって、3の倍数ではない でもいいですか? また①は3でくくったものは整数より、3(----)は3の倍数で、それと別に1が残っているから3の倍数ではない。 というこ... 続きを読む

98 00000 対偶を利用した証明 (1) 基本例題 56 整数 n の平方が3の倍数ならば,nは3の倍数であることを証明せよ。 指針n² が3の倍数→nが3の倍数 を直接証明するのは, 「n² が3の倍数」 が扱いにくいの で面倒である。 そこで, 対偶を利用した (間接) 証明を考える。 対偶を考えるとき,「nが3の倍数でない」ということを、どのような式で表すかがポイン トとなるが,これは次のように表す (検討 参照 )。 n=3k+1[3で割った余りが1], n=3k+2[3で割った余りが2] なお,命題を証明するのに,仮定から出発して順に正しい推論を進め、結論を導く証明は を直接証明法という。これに対して, 背理法や対偶を利用する証明のように, 仮定から 間接的に結論を導く証明法を間接証明法 という。 解答 与えられた命題の対偶は 「nが3の倍数でないならば,n²は3の倍数でない」 である。 nが3の倍数でないとき, kを整数として, n=3k+1またはn=3k+2 と表される。 [1] n=3k+1のとき n²=(3k+1)^=9k²+6k+1 =3(3k²+2k)+1 3k²+2k は整数であるから,n²は3の倍数ではない。 [2] n=3k+2のとき n²=(3k+2)^=9k²+12k+4 =3(3k²+4k+1)+1 3k²+4k+1は整数であるから, n²は3の倍数ではない。 [1], [2] により, 対偶が真である。 したがって, 与えられた命題も真である。 基本 55 0, 1) 2で割った余りが ① 直接がだめなら間接で 対偶の利用 (p.99 の検討も参照。) 検討 整数の表し方 整数nは次のように場合分けして表すことができる (kは整数)。 ① 2k, 2k+1 (個数、奇数 ② 3k, 3k+1, 3k+2 (3で割った余りが 0 1,2) ③ ph, pk+1, pk+2, ., pk+(p−1) (pで割った余りが 0, 1,2, ...... 詳しくは数学A で学習する。 3× (整数)+1の形の数は, 3で割った余りが1の数で、 3の倍数ではない。 [¯¯¯

解決済み 回答数: 1
情報:IT 高校生

情報1 コンピュータでの実数の表現についてです。 教科書にはこのように(添付した画像)書かれているのですが、何が何だか全く分かりません… 明日考査なのでどなたか解説していただきたいです😭

1 小数点の位置を固定して 表す方法を固定小数点数と いう。 表現できる数値の範 囲が浮動小数点数よりも狭 い。 ② 最上位の桁がすべて 1 で共通なので,その次から を仮数部として表現すれば よい。 例えば, 1.0101なら仮数 部は0101, 1.1111なら 仮数部は1111である。 ③16ビットの浮動小数点 数は半精度浮動小数点数と 呼ばれる。 このほかに, 32 ビットの単精度浮動小数点 数や64ビットの倍精度浮 動小数点数などがある。 ④指数部が5ビットの場 合, 表現できる数は25個で あるが, 整数の表現 (- 16~15) とは異なる表し 方をする。 指数部の大小関 係を比較しやすいように, 補数を使わず0以上の値 に変換して表す。 指数に 15 (バイアス値)を足し て-15を00000,16を 11111とし, -15~16 を表す。 4 コンピュータでの実数の表現 小数部分を含む実数を表す場合には,次のような形の浮動小数点数 ① がよく使われる。 符号部 指数部 × 仮数部 10進数での浮動小数点数の表し方は,符号は+か-, 指数は10の何 乗の形, 仮数は最上位の桁が1の位となる小数である。 AUN - 423 = 102 × 0.375 10 3.75 2進数での浮動小数点数の表し方は,基本的には10進数と同じであ る。コンピュータで扱うためには, すべてを0と1で表現しなければ ならないので,次の工夫をする。 = 符号部 0 を正, 1 を負とする。 指数部 仮数部 + 10.1 ↓ +2×1.01 符号部 ↓ 0 1 0 0 一番小さな指数が0となるように数値を加え,調整する。 最上位の桁は常に1となるので,1を省略し,その次の 2番目の桁からを仮数部とする。 16ビット(2バイト)で,符号部を1ビット,指数部を5ビット, 回 仮数部を10ビットとして表現すると次のようになる。 符号部 ( 1ビット) 指数部 (5ビット) 仮数部(10ビット) 例えば, 10進数の 「2.5」 を, 16ビットの2進数の浮動小数点数で 表すと,次のようになる。 ①10進数の 「2.5」 を2進数の小数にする 2.5=2+0.5=2′×1+2°×0+ 2 ′ ' x1 = 10.1 (2) ②2 進数の10.1を浮動小数点数にする 指数部 1 +15=16 0 0 0 1 0 4.23 × 0 0 仮数部 01 0 0 0 0 0 は、0.001 小数の桁の び、その 123 この2つを

解決済み 回答数: 0
数学 高校生

(2)の ∵(1) の行から分かりません... どなたか教えてください

導関数 93 (1) f(x), g(x) をxの整式とするとき, 次の等式を証明せよ。 {ƒ(x)g(x)}'=f'(x)g(x)+ƒ(x)g'(x) (2) f(x) を0でないæの整式とする. 自然数nについて d ¹/__ { f(x)}" =n{f(x)}"~¹ƒ'(x) dx であることを証明せよ. 精講 の特殊な例です. どちらも数学Ⅲで 扱うものですが、知っておいて損はないでしょう. (1) 導関数 f'(x) の定義から出発しましょう. 関数 y=f(x) が与えられたとき、xのおのお のの値αに対し,f'(a) が存在するとき, 対応 a→f'(a)は1つの新しい関数となります。 これはf(x) から導かれた新しい関数ですから, f(x) の導関数 (derived function, derivative) といい, f'(x) と表します。 (x)^x=(1) f'(x)=lim f(x+h) -f(x) h h→0 f(x) から f'(x) を求めることを微分するとい います. 導関数の表し方は f'(x) のほかに dy d y', y, dr' anf(x), Df(z) (1) は積の微分, (2) は合成関数の微分 解法のプロセス dy などもあります。」はニュートン, dx (1) {f(x)g(x)}' =lim h→0 BROSSARD a 213 ニッツが用いた記号です. (2) 自然数nについての証明問題ですから,数 学的帰納法を使うとよいでしょう. f(x+h)g(x+h)-f(x)g(x) =lim h→0 はライプ 解答 (1)積の微分 iu-te {f(x)g(x)} 導関数 f'(x) の定義 ↓ f(x+h)-f(x) h lim- h-0 ↓ (滋賀大) =f'(x)g(x)+f(x)g'(x) (2) 合成関数の微分 {(f(x))"}' =n{f(x)}"-¹f'(x) AJSHOW 特に {(ax+b)"}' =na(ax+b)-1 この公式は使えるようにして おこう {f(x+h)-f(x)}g(x+h)+f(x){g(x+h)-g(x)} 導関数の定義 ◆f'(x), g'(x) が現れ るように工夫する 第6

解決済み 回答数: 1
数学 高校生

数IIの二項定理の問題です。 赤線部の問題で、2行目の式の 意味が分からないので教えてください。

重要 例題 16 n桁の数の決定と二項定理 (1) 次の数の下位5桁を求めよ。 (ア) 101100 (イ) 99100 (2) 2951 900で割ったときの余りを求めよ。 解答 (1) (ア) 101100=(1+100)'=(1+102) 100 (1) これらをまともに計算することは手計算ではほとんど不可能であり,また,それ を要求されてもいない。 そこで,次のように 二項定理を利用すると,必要とされ る下位5桁を求めることができる。 (ア) 101100=(1+100)'=(1+102) 100 これを二項定理により展開し,各項に含ま れる 10"(nは自然数) に着目して,下位5桁に関係のある範囲を調べる。 (イ) 99100=(−1+100)'= (−1+102) 100 として, (1) と同様に考える。 (2) (割られる数) = (割る数) × (商)+(余り) であるから 2951を900で割ったと きの商を M, 余りをrとすると, 等式 295 900M+r (Mは整数, 0≦x<900) が成 り立つ。 2951 (30−1)であるから, 二項定理を利用して, (30-1)を900M+r の形に変形すればよい。 =1+100C ×102 + 100C2 ×10+10°×N =1+10000+495×10 +10° ×N ==S (Nは自然数) この計算結果の下位5桁は,第3項,第4項を除いて も変わらない。 よって, 下位5桁は 10001 100 (イ) 99100=(-1+100)'=(−1+102) 10 =1-100C1x102+100C2×10+10°×M =1-10000+49500000 + 10° × M =49490001+10° × M (Mは自然数) この計算結果の下位5桁は,第2項を除いても変わら ない。 よって,下位5桁は 90001 (2) 2951(30-1)51 000 [類 お茶の水大] ・基本1 =900(3048-51C1×3048+.・.・.・-51C49 +1 +629 ここで,3048-51C1 × 30 +51 C49 +1は整数である から 295 900で割った余りは 629 である。 <展開式の第4項以下をま とめて表した。 10"×N (N, nは自然数, n≧5) の項は下位5桁の 計算では影響がない。 展開式の第4項以下をま とめた。 なお, 99100 は 100 桁を超える非常に大 きい自然数である。 900=302 =3051-51C1×3050+ 51 C49×302+ 51C50×30-1(-1)'は =302 (3049-51C1 ×3048 +· ・・・ -51C49) +51×30-1 =900(304-51Ci ×3048 + ・・・・・・-51C49) +1529 が奇数のとき -1 rが偶数のとき 1 1529=900+629 21 一章 1 章 ① 3次式の展開と因数分解、 二項定理

解決済み 回答数: 1