学年

教科

質問の種類

数学 高校生

この問題で、接線を写真のように置くか、接点を解答のように置くか迷ったのですが、どう判断すればよいですか?回答よろしくお願いします。

例題 D 出 不★★☆☆ 点(α, 0) から曲線 y=logx に異なる2本の接線を引くことができると 定数αの値の範囲を求めよ。 ただし, lim- t 0 を用いてよい。 (1) 817 点 (t, logt) における接線を1とすると 点(α, 0)から→ l が (a, 0) を通る →t と αの方程式 - 【 接線が2本 → 接点が2個 対応を考える «ReAction 接点が与えられていない接線は,接点を文字でおけ 例題 34 () tについての方程式と →みて、異なる2つの 実数解をもつ → tが2個 3 (logx)'= = よりの傾きはあり 1 x ( 章 t₁ t2 接点が異なる 接線の傾きが異なる 接線が異なる Action» 接線の本数は、接点の個数を調べよ 思考のプロセス いろいろな微分の応用 接点をP(t, logt) (t > 0) とおくと、点Pにおける接線の真数条件 moiinA 例題 84 方程式は y-logt = =(x-t) これが点(a,O)を通るから, 0-logt = 1/2(a-t)より y' = 1 x t(1−logt) = a ・① であるから、接点が異なれば接線も異なる。 よって、接点の個数と接線の本数は一致する。 ゆえに、tの方程式 ① は異なる2つの実数解をもつ。 f'(t) =-logt f(t) = t(1-logt) (t > 0) とおくと f'(t) = 0 とするとt=1 ここで,logt = -s とおくと, t→+0 のとき s→∞ となり 1 y' x ol (U) 014 12130-(笑) t (0) 両辺に掛ける。 キのとき 1 1 -キーより, 接点が異 t₁t2 なれば接線の傾きも異な る。 (x) limtlogt = lime*(-s)=i(-1/2)=0 S (S) よって limf(t) = 0 YA また, limf(t) = =-- ∞ であるから, 1- y=a 817 2本の接線を引いた図 例題 118 増減表とグラフは次のようになる。 1 0 e t t 0 ... 1 ... f'(t) f(t) + 0 7 1 y=f(t) ①の実数解は,曲線 y=f(t) と直線 y=αの共有点の 座標であるから, 異なる2つの共有点をもつとき,定数 の値の範囲は 0 <a< 1 Oa y=logx 本の接線が引けるとき, 定数 αの

解決済み 回答数: 1
数学 高校生

数II 円の接線、接点の問題です。練習31を、教科書の例を基に解いているのですが、x₁の消去の仕方がわかりません。解き方を教えてください。

5/8 練31 P103 点A(2,1)から円に引いた後線の試と接定の座幅 第2節 円 103 | 接点をPlug)とすると、Pu円上にあるかる。 2 x² + y² = 10 前ページの,円上の点における接線の方程式の公式を用いて、円の外 部の点から円に引いた接線の方程式を求めてみよう。 第3章 図形と方程式 「応用 例題 3 点A(1,3)から円 x2+y2=5に引いた接線の方程式と接点の座 標を求めよ。 考え方 前ページの接線の公式を用いるためには、 接点の座標が必要である。 接点をP(x1,y) とする。 TATKOMEBER 解答 接点をP(x1,y) とすると, Pは円上 にあるから 12+2=5 ① A(1,3) √5 また,Pにおける円の接線の方程式は 10 √5 0 √5 x xx+yy=5 ・・・・・・② この直線が点A (1, 3) を通るから 2+y2=5 1+3y1=5 ③ ①③ から x を消去して整理すると y₁2-3y₁+2=0 これを解くと y=1, 2) ③に代入して y=1 のとき x=2, y=2 のとき x=-1 よって、 接線の方程式 ②と接点P (x1,y) の座標は,次のよう になる。 接線 2x+y=5, 接点 (2,1) 20 接線 -x+2y=5, 接点 (-1, 2) 【?】 求めた2つの接線が、円x2+y2=5に接していることを確認してみ よう 練習A(21) から円 x2+y^2=1 に引いた接線の方程式と接点の座標を 25 31 求めよ。 5 また、Pにおける円の接線の方程式は。 x, x + y, z=1 ② この直線が点A(2,1)を通るから。 2x+y=1 ③

解決済み 回答数: 1