学年

教科

質問の種類

数学 高校生

詳しく解説お願いします よろしくお願いします

の一般 の値に = () () [例題] 思考プロセス 8 二項定理の応用 (1) 11100 の十の位の数と一の位の数を求めよ。 (2) 2121400で割ったときの余りを求めよ。 式を分ける (1) 百の位以上の数をなるべく除いて考えたい。 (2400(20) で割り切れる部分を分ける。 明らかに 100で割り切れる部分を分ける。 11100 = (10+ 1)100 = (1+10) 100 = 100 Co + 100C1 ・ 10' + 100C2・102 + ... +100C100・10100 KOTE 2013 2121 = (20+1)^1 = (1+20)21 = 21Co+ 21C120' + 21C2・202+ … +21C21・2021 Action>> N” の下桁の値は、 二項定理を用いよ 解 (1) 11100 (10+ 1)100 = (1 +10) 100 = 練習 8 = 100Co1 + 100C110' + 100 C2102 + ・・・ + 100 C100 10100 ここで,r2 のとき 100 C 10 は 100の倍数であるから, 100 C2102 + ・・・ + 100 C100 1010 は 100の倍数である。 また 100 Col + 100C110' = 1 × 1 + 100 x 10 = 1001 したがって, 11100 の十の位の数は 0, 一の位の数は 1 (2) 2121 = (20+1)^1 = (1 +20)21 = 21Co1 + 21C120' + 21 C2202 + ・・・ + 21 C212021 ここで,r2のとき 21 C20 は 202=400 の倍数であ るから, 21 C2202 + ・・・ + 21 C212021 は 400の倍数である。 よって, 2121 を400で割ったときの余りは, ケア21 Co1 + 21 C120' を 400で割ったときの余りに等しい。 21 Col+ 21C120'=1×1+21×20 = 421 = 400 +21 したがって, 2121 を 400で割った余りは 21 Point... 整数 (a±1)" を α で割ったときの余り 21 (20+1), 19 (20-1) などのように, 整数a に対して (a +1) または (a-1)の 形で表される整数をn乗した整数 (a±1)" を α (0 ≦k≦n) で割ったときの余りは, 二項定理を用いて求めることができる。 (a+1)" = (1+a)" = nCo·1+nC₁ a¹ +nC₂·a²+ + ₂C₁ •a* + ··· +nCn • an (a-1)" = (−1+α)"="Co.(-1)"+C (-1)"-1α'+n C2(-1)" -2.² + ... 自然数nを用いて 11100=1+100C110'+100n と表すことができる。 +nCk(-1) "-kaw+..+nCma" 上の等式について,自の部分が α で割り切れることを利用すると (a±1)" 余り+α* で割り切れる部分) となるので、余り が求まる。 (1) 11" の百の位、十の位, 一の位の数を求めよ。 (2)311900で割ったときの余りを求めよ。 →p.37 問題8 27 1 1 多項式分数式の計算

回答募集中 回答数: 0
数学 高校生

多項式の除法です。 2xの2乗をX-3で割ることはできないから、-7Xの上に2Xじゃないのでしょうか??

15 10 20 25 5 15 20 5 10 3| 多項式の除法 これまでは, 多項式について,加法,減法,乗法を考えてきた。ここで は, 多項式の除法を考えてみよう。 .81 + =A 整数について,余りを考慮した除法を考えた。 多項式についても、余り を考慮した除法を考えることができる。 まず, 整数の除法を振り返ろう。 例えば,172を7で割ると商は 24, 余りは 4である。 このとき 172 = 7×24 + 4 ← 割る数 × 商 + 余り である。 同じような計算を多項式で行うこと を考えてみよう。 例8 注意 1節多項式の乗法・除法と分数式 問14 2x-1 x-32x²2-7x+5 2x² - 6x 24 7)172 ・(x-3) ×2x 140・・・ 32 ・7×20 多項式 A=2x²-7x+5, 多項式 B=x-3のとき, AをBで 割る計算は次のように考える。 -x+5 -x+3. (x-3) × (-1) 2 28・・・ 4 7x4 最後の行に現れた2は, 割る式x-3よりも次数が低いから, これ以上計算を続けることはできない。 このとき, AをBで割ったときの商は2x-1, 余りは2である という。 上の計算から、 次の式が成り立つことが分かる。 A =Bx (2x-1)+2 割式x+余り ① このような計算では,割る式も割られる式も, 文字xについて降べきの順に整 理しておくとよい。 多項式 3x²+2x+1を多項式3x-4で割り, 商と余りを求めよ。 また、例8にならって, 多項式3x²+2x+1 を ① の形に表せ。 13 1章 章 方程式・式と証明

回答募集中 回答数: 0
数学 高校生

極限の問題です 黄色マーカーで引いたところの解説をお願いします

基礎問 90 第4章 極 51 数列・関数の極限(L)(b)別リアル) X X X X X ? L ① (2) BR る. (1) 一般項am をnで表せ. 数列 {an} は, a1= =1/12/1 .. (2) Sm= Can をnで表せ. k=1 精講 (n+2)an+1=nan (n=1,2, ・・・) をみたしてい (3) lim (S)" を求めよ.ただし, lim 11-00 典型的な極限の問題です. (1) は数学Bの範囲ですが, 漸化式のなかでは, 難しいほうに入りま す。(数学ⅡI・Bの基礎問では扱っていません) そこで,次のパターンを覚えておくことになります。 (an+1=f(n) an (f(n): 分数式) 型漸化式の解き方〉 2 (1+1 ) ² = e ak+1 ak (3)のただしがきにある 「lim (1+1/2)"= →∞ 72-00 -= =f(k) として,kに1,2,.., n-1 を代入して辺々かける。ただし =e」 は受験生が正しく使えない公式の 代表格ですが,大切な公式です。 使い方にコツがあるので, ポイントをよくみ てください 解答 (1) (n+2)an+1=nan より ak+1 k ak k+2 A₂ A³ a₁ az 1,2,.... n-1 を代入して, 辺々かけると n≧2のとき, 「い冷合わせるため を用いてよい。 an 1.23 an-1 3 4 5 n−2_n_l n n+1 an 2 = よって, as n(n+1) F-t, a== n(n+1) (a₁ = 1/29) これは,n=1のときも含むので, かけ終わりかけ 初めより, n-121 これから n≧2 辺々かける an n(n+1) (別解)(かなり速いのですが、理解しにくいかもしれません) (+2)an+1=nan の両辺に n +1 をかけると, (+2)(n+1)an+1=(n+1)nan ゆえに, 数列{(n+1) nan) は, 初項 2.1.a=1, 公比1の等比数列. よって, n(n+1)an=1 iha (2) (数学ⅡIB119) Sn= = ²₁R (k² + 1) = ² ( 1/² - x + 1) = 1 (3) (S.)-(1)-("+¹)*((₁+²) = tim (S.)*=lim{(1+2)^- 11-00 ポイント 演習問題 51 .. an= 1 (別解) (S)"=(1- 1) において,(n+1)=N とおくと, -N-1 △→∞ (S.)-(1+) -(1+)*(1 + 2 ) " - ((₁ + + ) * T * (₁ + 2 ) " N n→∞ のとき, N- ∞ だから, lim (S.)" =— Jim_{(1 + + )"}*(¹ + ) ¹ = 0 ²¹ = 1/ n→∞ e + (1) lim 1 n(n+1) =e (△はすべて同じもの) 次の極限値を求めよ. 2n no 2n+1) 1 n n+1 n+1 ² = = e = ¹ = ² ( (数学ⅡI・B64 指数の計算) 1 注 この公式は「△→±∞」で成りたちます. 0 91 (2) lim (1+- 71-00 2n 第4章

回答募集中 回答数: 0
数学 高校生

黄色マーカーで引いたところが分かりません。 どうして公比が1なのですか?

基 90 基礎問 51 数列関数の極限()()別リアル) 第4章 数列{an} は, a1=1,(n+2)an+1=nan (n=1, 2, ...) をみたしてい る. (1) 一般項an をnで表せ. 精講 (②2) Sn=a をnで表せ. k=1 (3) lim (S.)* * *³ *. *ÆL, lim (1+1)" = e n→∞ 118 ∴. 典型的な極限の問題です. (1) は数学Bの範囲ですが, 漸化式のなかでは,難しいほうに入りま す。(数学ⅡI・Bの基礎問では扱っていません。) そこで,次のパターンを覚えておくことになります. (an+1=f(n) an (f(n): 分数式) 型漸化式の解き方〉 meを用いてよい。 Qk+1=f(k) として,kに1,2,... n-1 を代入して辺々かける. (ただし, n≧2) ak (3)のただしがきにある「lim (1+1/2)^ 1\n 71-00 代表格ですが,大切な公式です。 使い方にコツがあるので、ポイントをよくみ =e」 は受験生が正しく使えない公式の 解答 (1) (n+2)an+1=nan より ak+1. k ak k+2 k=1,2,.., n-1 を代入して, 辺々かけると n≧2のとき, 「い合わせるため an 1.2.3 an 3 4 5 a₁ az an 2 = a₁ n(n+1) よって, an=- これは,n=1のときも含むので, かけ終わりかけ 初めより, n-1≧ これから n ≧2 辺々かける n-2n-1 n n+1 1 n(n+1) (a₁ = = ² * y) 注 1 an n(n+1) (別解)(かなり速いのですが、理解しにくいかもしれません) (n+2)an+1=nan の両辺に n +1 をかけると, (+2)(n+1)an+1=(n+1)nan ゆえに, 数列{(n+1)nan) は,初項 2.1.α=1,公比1の等比数列. よって, n(n+1)an=1 (2) (数学ⅡⅠIB 119 S.-2A(+1)=2(+1)=1-1-1 k+1/ (3) S." (7)-(+1)^-{(1+1)}' n+1\-n (S)"= = kik(k+1) -1 .. lim (S.)-lim ((1+1)=²¹=1 e 71-00 ポイント 演習問題 51 72-00 .. -N-1 1 an n(n+1) (別解) (S)"=(1-1)において,(n+1)=N とおくと, =(1+1)=(1+1/2)*(1+2)^'={(1+1/4)}*(1+1)^ n→∞ のとき, N- ∞ だから, lim (S.) - Jim ((1+)*(¹+¹== N-∞ NT-CY lim (1+1)=e A ±00⁰ (1) lim (△はすべて同じもの) 次の極限値を求めよ. 2n (数学ⅡI・B 64 指数の計算) この公式は「△→±∞」で成りたちます. n O 91 13 (2) lim (1+1/12 ) 2n 7118 第4章 2

回答募集中 回答数: 0
数学 高校生

紫で線が引いてあるところなんで引き算だとわかるのですか?かけ算して分子と同じ数になるように足し算か引き算か決めると思うのですが...。 だからといって普通に通分して計算すると2xになって4にはならないのですが…。

(2) = = = (1) 解答 = = 基本例題 14 分数式の加法, 減法 (1) 次の計算をせよ。 x+11 x-10 (1) 2x2+7x+3 2x2-3x-2 CHART SOLUTION 分数式の加法, 減法 分母が異なるときは通分する ・・・・・・ x+11 x-10 2x2+7x+3 2x2-3x-2 x+11 x-10 (x+3)(2x+1) (x-2)(2x+1) 4 x2+4 4 x2+4 (x+11)(x-2) (x−10)(x+3) (x+3)(2x+1)(x-2) (x-2)(2x+1)(x+3) (x²+9x-22)-(x² −7x−30) (x+3)(x-2)(2x+1) 8(2x+1) 4 x2+4 (1) 2x2+7x+3=(x+3)(2x+1)] 通分すると分母は 2x2-3x-2=(x-2)(2x+1)| (x+3)(x-2)(2x+1) (x+3)(x-2)(2x+1)(x+3)(x-2) 4.(-8) (x2)2-42 (2) そのまま左から順に計算してもよいが,3つ以上の分数式の加減では, 数式を適当に組み合わせると、計算が簡単になる場合がある。 この問題で 1 x-2 x-2 4 x2-4 4 (与式)=(2x+2) とみて、()の部分を先に計算するとよ \x-2 + = x+2 x+2 4 (2) x²+4 8 = 32 x-16 4 x2+4 16x+8 (x+3)(x-2)(2x+1) 1 x-2 4{x2-4-(x2+4)} (x²+4)(x²-4) (x+2)-(x-2) (x-2)(x+2) ・+ Eto 1日 x+2 ((1) 駒 Ip.21 基本 ◆ まず分母を因数 ◆通分する。 = 分子を因数分解。 は展開しなくてよ 左から順に計算し 合、最初の2項に 4(x-2)-(x2+ (x²+4)(x-2 -x²+4x-12 (x+4)(x-2) となり、後の計算 になる。

回答募集中 回答数: 0