学年

教科

質問の種類

数学 高校生

常用対数 これの(2)がなんで39桁になるかが分かりません( ˘•ω•˘ ).。oஇ 回答よろしくお願いします🙇🏻‍♀️⸒⸒

の最大値と最小値を求めよ。 本 188 常用対数を利用した桁数, 小数首位の判断 ①①①①① Ag2=0.3010,10gto3=0.4771 とする。 a lagio, logio 0.006, logiov/72 の値をそれぞれ求めよ。 は何桁の整数か。 100 小数で表すと、小数部位に初めてでない数字がれるか p.302 基本事項2 の累乗の積で表してみる。 なお,10g105の5は510÷2と考える。 (1) 底は10で, log102, 10g103の値が与えられているから,各対数の真数を2,310 3 2100 (2) (3) まず 10g 10 65, 10g10 を求める。 解 あり 解答編 .190 検討 参照。 正の数Nの整数部分が桁⇔k-1≦log10N <k 正の数 N は小数第k位に初めて0でない数字が現れる⇔k≦logN<-k+1 CHART 桁数, 小数首位の問題 常用対数をとる 303 10 (1) log105=logo =10g1010-10g102=1-0.30100.6990 log10.006=login (2・3・10-)=10g102+log10 3-310g 10 10 =0.3010+0.4771-3=-2.2219 logi√72=logio (2-3) = (310gin2+210gi3) <log1010=1 重要 10g 5=1-log 2 この変形はよく用いられ る。 √A=A =12(3×0.3010+2×0.4771)=0.9286 (2) log 10 650-50 log106=50 log10(2.3) =50(10g102+10g103) =50(0.3010+0.4771)=38.905 ゆえに 38 <10g10 65 39 よって 1038 <6501039 したがって, 650 は 39桁の整数である。 2\100 (3)10g10( =100(10g102-10g103) 3 (2) 10 ≤N<10%+1 ならば,Nの整数部分 は (+1) 桁。 =100(0.3010-0.4771)=-17.61 -18<logio ゆえに よって 10-18< 2 *<(3) 200 100 <-17 <10-17 ゆえに、小数第18位に初めて0)でない数字が現れる。 5章 (3) 10 ≤N<10-*+1 ならば, Nは小数第 位に初めて0でない数 字が現れる。 練習 188 log 102=0.3010, 10g103=0.4771 とする。 15 は 桁の整数であり, は小数第 1位に初めて0でない数字が現れる。 3100 3-5 p.312 EX121

解決済み 回答数: 1
数学 高校生

数2の質問です! (2)でなぜ23は答えにならないのかを 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

log102=0.3010, 10g103=0. (1) 232 は何桁の整数か。 (2)3”が12桁の整数となる自然数nの値をすべて求めよ。 50 (3) (2) は小数第何位に初めて0でない数字が現れるか。 CHART & SOLUTION 整数の桁数, 小数首位 常用対数の値を利用 (1) Nが桁の整数 - →10-1≦N<10"⇔n-1≦10g 10N <n logo2=0.3010 を用いて, 10g10232 の値を求める。 20 10'≦3"<1012⇔ 11≦nlog103 <12 (2)3" が 12桁の整数 (3) Nの小数首位がn位 ->> ≤ 10" 10" ≤N<--n≤log₁N<−n+1 2\50 -n≤log10 <-n+1 を満たす自然数n を求める。 3 解答 244 基本事項 5 (1)10g10232=3210g102=32×0.3010=9.632 常用対数の値を求める。 よって 9<log10 232 <10 ゆえに 10°2321010 ←log1010° <logio232 したがって, 232 は10桁の整数である。 <log 101010 (2)3" が 12桁の整数であるとき 101131012 tl よって 11≦nlog103 <12 各辺の常用対数をとる。 大 ゆえに 11≦0.4771xn<12 logx23 ゴールド 11 12 よって ≤n<- 0.4771 0.4771 ◆各辺を 0.4771 (=10g103) で割る。 すなわち 23.0...≦x<25.1・・・ nは自然数であるから n=24,25 吟味。nは自然観 (3)10g10 (2) O 2\50 2 =50 log 10 = =50(10g10 2-10g103) 常用対数の値を求める。 =50×(0.3010-0.4771)=-8.805 50 23 よって ゆえに -9<log10(-8 2\50 10-9<(2)°<10-8 したがって, 小数第9位に初めて0でない数字が現れる。 log10 10-<logi <logio10 sarpe isar 70-3)-

解決済み 回答数: 1