学年

教科

質問の種類

数学 高校生

[2]の場合分けで=がつく理由を教えて下さい 4/3aまでだったら4/3aの時も最大値になりませんか?

して 値 し こ 含む 3次関数の最大・最小 4 DO aを正の定数とする。 3次関数f(x)=x-2ax²+ax 0≦x≦1における最大 値M (α) を求めよ。 [類 立命館大] 基本 211 重要 214 指針 文字係数の関数の最大値であるが, p.329 の基本例題211と同じ要領で, 極値と区間の端 での関数の値を比べて最大値を決定する。 f(x)の値の変化を調べると, y=f(x)のグラフは右図のようにな YA る(原点を通る)。 ここで, x= a 以外にf(x)=f a =(1/3)を満たす (01/27) 3 f(1/3) 6章 (これをaとする)があることに注意が必要。 O a 10/3, α ( 1 <a)が区間 0≦x≦1に含まれるかどうかで場 a よって, a x 3 #²² y=x²³-2ax² +a²x 合分けを行う。 直線y= 4a²は 27 解答 x=1で持するので(と)を因数に f'(x)=3x2-4ax+α² f(x)=x(x2-2ax+α²) a =(3x-a)(x-a) =x(x-a)^2 から xC .…. a a f'(x)=0 とすると x= a f'(x) + + ¹ ( ²² ) = ²/² ( - ²3/3 a)² = 24/7 0 |極大 a>0であるから, f(x) の増減表 極小 [1] YA f(x) / 4 -a³ 0 a²-2a+1 は右のようになる。 27 a 4 ここで,x= 以外にf(x)=3 を満たすxの値を求めると 27 4 f(x)=1/27から x³-2ax²+a²x- a =0 487 x²³-²9x²0x² = ·93 27 a ゆえに x- =0 xキ であるからx= 3 したがって、f(x) の 0≦x≦1における最大値 M(α) は ① [1] 1<// すなわち4>3のとき M(a)=f(1) ①で割る②敷をとる(不等号逆にする [2] a saya すなわち ≦a≦3のとき M(α)=f [3] 0</1/3 a <1 すなわち0<a< 3 のとき M(α)=f(1) 以上から 0<a<2,3<a のとき M(a)=a²-2a+1 3 4 10 a a 4 a ≦a≦3のとき 3 3 4 M(a)= a³ 27 速度 (6) 曲線 y=(x)と直線ソニーでは、x=gの点において接するから、バー2/ は (x-23 ) で割り切れる。このことを利用して因数分解している。 練習 ③213 aは正の定数とする。 関数f(x)=-1+1/10ax²-2ax+α の区間 0≦x≦2にお ける最小 8 ... 430 [2] YA 4 279³ 0 [3] y 1 a 3 最大 -最大 1 a a²-2a+1 最大! a 18 331 章 37 最大値 ・最小値、方程式・不等式

回答募集中 回答数: 0
数学 高校生

ex136で、最後a≠0になるのはなぜですか?

一数学 において、解と価数の関係から EX 関数(x)-3"+43-a)+121-a (a2)について、)が小となるまの価とそのと 極大値と極小値の平均が1のとき,Aa)-八-から )は権大値と極小植をもつから、()より -3b>0 )が権大値と極小値をもつとき,極大値と極小値の平均が1となるためのa、 異なる2つの解をa, hとすると、極大値と報小値の平 EX 135 )ーーar=r- 計)- aの大が である。 学 -2 は 「 -0のとき よって、)は単画に増加するから、極値をもたない。 したがって、この場合は不通。 2) >8のとき )の増域表は右のようにな る。よって、求める条件は )-0とすると キにならば、バが ra)+1)=(『+)-ala+P)+Ma++2 (a+-3la+一ala+a-a +du++ よって に 2 である。 27 4 +b+2 パ0- リー ーるー」 一が++1=) a(2-96)=0 a-0または6=。 ()-から イリー1から のをのに代入して整理すると 『は実数であるから くDのとき 」の増減表は右のようにな る。よって、求める条件は を- a-2 ゆえに これはa>0を満たす。 4再図にをけて 母を払う。 0 よって EX 0 すなわち 求める図形は、2,③それぞれが表 す図形の共通部分であるから,右の 図の実線部分である。 ただし、原点は含まない。 大 極小 あく 分 リー、0-1 イトから ー ロ-と独物陣カー ハー (a0 F0)-1から をに代入して整理すると aは実数であるから これはなくりを満たす。 そ+7 -la+3(-s, g=-27 を合わせたもの。②が 者す図形は、教物 『ー-3 ロ-く b=号の下側の整分。 3 137 の権小値を求めよ。 F(x)=12x°+12(3-a)x'+24(1-a)x -12x(x*+(3-a)x+2(1-a)} =12x(x+2)(x+1-a) 『(x)=0 とすると 0Sa<1のとき 増減表は次のようになる。 以上から a=3, b=5 または =-3,ク=1 EX 136 ) )が極大値と極小値をもつためのは、あの条件を求めよ。 x=-2,0,a-1 -1Sa-1<0 が変す国形を、平宙上に関示せよ。 () Fx)=3x-2x+6 Ta)が極大値と極小値をもつための条件は、2次方程式 (x)=0すなわち3r-2r+b%=0 教解をもつことである。 よって、のの判別式をDとすると 9-(-aアー3-b=dー36 そ3次関数バ) をもつ aー1 のが異なる2つの実 ず(x) 0 0 0 )-0がなも つの実教解をもっ 「x) 極小 極大 0 極小と D>0 [2] =1のとき a-1=0 2) 0 ここで 増減表は右のようになる。 『(x 0 極小 =F) ゆえに、求める条件は a-36>0 0 0

回答募集中 回答数: 0
数学 高校生

この問題を数3の三角関数の微分の知識を使い解き方を教えて欲しいです

OO000 基本例題 187 三角関数の最大·最小(微分利用) 0<x<2xのとき, 関数 y=2sinxsin2x-COSXT2 の最大値と最小体 よびそのときのxの値を求めよ。 282 お 【宮城教育大) 基本 125,185 CHARTO 2倍角を含む三角関数 1つの三角関数で表す 2倍角の公式 sin2x=2sinxcosx,相互関係 sin'x+cos"x=1 を用いて だけの式で表す。 cos.x=t とおくと, yはtの3次関数となる。 ! なお,tの変域はxの変域とは異なることに注意。(か.192 基本例題 125 参照) OLUTION y=2sinx·2sin.xcos.x-cos.x+2=4sin'xcos.x-cos.x+2 =4(1-cos'x)cos.x-cos.x+2=-4cos"x+3cos.x+2 coS.x=t とおくと, OSx<2π であるから 『yを!で表すと,y=-4t°+3t+2 であり y=-12°+3=-3(2t+1)(2t-1) 合おき換えによって,とり うる値の範囲も変わる。 -1Sts1 y=0 とすると t-1| … 1 2 2 1 y 0 0 -1StS1 におけるy の増減表は右のように なる。 y 3 Oる 0nf. 3倍角の公式利用 よって,yは t=-1, 号で最大値 3, cos 3x=-3cos.x+4cos'x から y=-cos3x+2 -1Scos 3xS1 から 最大値3, 最小値1 21 0Sx<2x であるから t=-, 1 で最小値1をとる。 る t=-1 のとき x=π;t=; のとき x=%, ; -1 -のとき x%=D今t, :t=1のとき x=0 -π 5 2 * cosx=-1から x=ズ から したがって x= , で最大値3, coSx= 2 5 x= 大阪1は *=0, て,で最小値1をとる。 から COSX=- 3た x= Cos.x=1 からx=0 PRACTICE… 187® 0S0s2r T eB1

未解決 回答数: 1
数学 高校生

青線のところがわからないんですけど、分数から範囲をどのように考えるのでしょうか。

●7 実数解の個数/定数項以外に文字定数 関数/(z)=arー(a+3)ェ+a+3について、 次の問いに答えよ、 ただし、 aは0でない実数とする。 (1)F(z)の導関数をf(x)とする。 rの方程式(x)=0が実数解をもつようなaの範囲を求 め、またそのときの実数解をすべて求めよ。 (2)ェの方程式S(z)30 が3個の異なる実数解をもつようなaの範囲を求めよ。 の方程式 のと 『(a)f(B)の正負で解の個数がわかる)3次関数yー/(x)が、 エ=a, Bで極値を持つとき。 『(a)S(B)が、正, 0, 負のどれであるかによって,「(x)30 0 の解の個数が分かる。 (i)/(a)S(B) <0 →(a)とS(B)は異符号 [S(a)S(B) <0なら,a+8) (i)f(a)f(B)=0 →(a)=0 または「(B)=0 ()f(a)S(B)>0→(a)とS(B)は同符号 であることに注意すれば、(i)~( )のグラフは、((x)のrの係数が正とする) (宮城教大) の範囲を のふるま 式の解に この間題の にする。 AdinhA 3。 )=0と となる。実数解の個数は、グラフとェ軸の共有点の個数なので、①の実数解は、 (i)のとき3個 (i)のとき2個 )のグ (出)のとき1個 ■解答 aの (1)(x)=3ar"-(a+3) であり, aキ0, f"(z)=0より。 a>0)。 F)と の範理 図よ +に にで、 タ+3 右辺が非負のとき、エ=± 3a 左辺は、a>0のとき正なので、 0>a>-3のときは負,-3>a のときは正となる。 |a+3 a+3、 3a V (=±y)とおく。 3a 20. この左辺は,a=0, -3の前後で符号変化し,aS-3, 0<くa… 0 が成り立だなければならないから,以下ドのの下で考える。 f(z)=0が3個の異なる実数解を持つ→(y)f(-y)<0 (z)を(z)で割ると, 商一,余り -(a+3)x+a+3となるので やf(y)(-y)<0ならば、 アキーyなので,ェ=Y, -yで極 a+ (a)=(a)-(a+3)ェ+a+3. これにューッを代入して、 値を持つ。 こで バ)ー)-+3e+3=(-号)(a) ので やp.14で紹介した「次数下げ」 よって 同様にして、(-r)= F やf(y)=0 バフ)(ー)-(-り)(0+3(1 ) a=-3のとき(y)f(-y)=0で不適であり,(a+3)>0に注意すると、 f(y)S(-y)<0 4 a+3 23a-12 9 3a 12 27』 07 演習題(解答は p.127) 23 12 23 0 aは実数とする。3次方程式+3ar"+3ar+a=0 の異なる実数解の個数は, 定数α の値によってどのように変わるかを調べよ。 極値の積の正負を調べ る。 120 (横浜市大·理系)

未解決 回答数: 1