学年

教科

質問の種類

数学 高校生

数学Aの場合の数と確率です ここの95と96を回答を読んでもわからないです、 あと96の[1]回答の5C3がなんで5・4・3と4・3・2・1になるのですか、? 分かりやすく教えて頂きたいです、!

6 確率の基本性質 1 確率の基本性質 1. どんな事象についても 0≤P(A) ≤1 とくに空事象について P(Ø) = 0, 2. 確率の加法定理 事象 A,Bが互いに排反であるとき P(AUB)=P(A)+P(B) 事象 A,B,Cが互いに排反(どの2つの事象も互いに排反)であるとき、3つの事象 のいずれかが起こる確率P (AUBUC) は P(AUBUC)=P(A)+P(B)+P(C) 2 一般の和事象の確率 2つの事象A,Bについて 3. 余事象と確率 92 0 *93 0 94 *96 P(A)+P(A)=1 DOVA 全事象Uについて P(U)=1 P(AUB)=P(A)+P(B)-P(A∩B) すなわち □ P(A)=1-P(A) A問題 HOTEL 1個のさいころを投げるとき, 「奇数の目が出る」という事象を A,「素数の 目が出る」 という事象をBとする。 ◆教p.50 例 15 (1) 事象 A∩B, AUB を表す集合をそれぞれ求めよ。 (2) 確率P(A∩B), P (AUB) をそれぞれ求めよ。 00000000000000 1から10までの10枚の番号札の中から1枚引くとき、次の事象のどれとど れが互いに排反であるか。 ●教 p.51 事象A: 偶数の札が出る 事象 C: 6の約数の札が出る 事象B : 奇数の札が出る 事象D: 7 の札が出る ( 1等 2等、3等の当たる確率がそれぞれ 5 1030 100 100' 100 であるくじがあ 神 *95 白玉5個、赤玉6個、青玉1個の入った袋から, 2個の玉を同時に取り出す とき 2個とも同じ色である確率を求めよ。 ◆教p. 53 例題 4 る。このくじを1本引くとき、 次の場合の確率を求めよ。 ◆教p.53 例 16 (1) 1等または2等が当たる。 (2) 1等、2等, 3等のいずれかが当たる。 赤玉5個、白玉7個の入った袋から, 4個の玉を同時に取り出すとき,その 中に赤玉が3個以上含まれる確率を求めよ。 教p.53 例題 4 97 4枚の硬貨を同時に投げるとき,表が3枚以上出る確率を求めよ。 教p.53 例題 4 第1章場合の数と確率

回答募集中 回答数: 0
数学 高校生

平面ベクトルについて質問です。 【2】でf(-1)f(1)≧0となっていますがどちらもせいになる場合、どこかでy軸0と交わる点が出てくるのではないかと思いました。教えて頂きたいです。

東京 新課程 リードα 化学量 322 数学B 91-402 今生 (nb+mc)-(-mb+nc)=0 Tok -mn/bf-(m²-n²) b-c+mnlcf=0 であるから 6-c=0 (2) AEL DF であるから よって ゆえに <ポイント> 文字をおいて 式をたてる m0.n>0.man であるから 7. であるから AE-DF=0 EX △ABCの辺BC, CA, ABの中点をそれぞれ D, E, Fとする。 △ABCの内部に点をとり 分 OA, OB, OCの中点をそれぞれP, Q. Rとするとき. 3 直線 DP. EQ, FRは1点で 22.0t 17 わることを証明せよ。 OA=4,OB=6, OC = とすると (m²-n²)b-c=0 00+ OE- OF_a+b 2. 2 OP-4.00-4. OR- OT=OE+0Q 2 ABLAC よって,線分 DP, EQ. FR の中点をそれぞれS, T. Uと すると OU_OF+OR 2 OS=OT-OU 05-06+0³ 16+c+2)_+6+è OD+OP OS= 2 --- 4 a+b+c <p = -1/2) = ²² 4 1 (ētā + (+5+)_+6+à OR=rOA+(1-1)0Q ****** 2 うちけん =rat1246..... ① 条件から OP=ta, OQ=-1-6 QR: RA=r: (1-r) (0<r<1) とす ると 4 PR: RB=s: (1-s) (0<s <1) とすると OR=(1-s) OP+sOB =(1-s)ta+sb 0 ○ ←AE-DF 1 (m+n)² (nb + m²) -(nc-mb) -045 (nb+mc) (-mb+nc)- の位置を B b B・ ゆえに よって, 線分 DP, EQ, FR のそれぞれの中点は一致するから. ←3点S, T.Uの位置 ベクトルが一致。 3 直線 DP, EQ, FRは1点で交わる。 P EX 平面上に長さ3の線分 OA を考え, ベクトル OA をaで表す。 0<t<1 を満たす実数に対し 18 (東北大) このとき,どのように0をとっても OR と AB が垂直にならないようなtの値の範囲を求めよ。 a 求めたい すようにとり。 B を OB = で定める。 線分 OBの中点をQとし,線分 AQ と線分BP の交 点をRとする。 F Q ( A D R. DE PQ 12 長さが同じ 平行であるこ てから FA なす角が< 8 <180° であるから 60 であるから. ①.②より 1-1=s =(1-s) t. 2 (0<t<1) [HINT] QR: RA=r: (1-7). PR: RB=s: (1-s) とし OR を2通りで表 す。 OR·AB=(2—¿ª+¹−16)·(6−à) axb =2²7 (−tlāß+(1−1)|B³+(2+−1)ã•b} =2-{-9t+4(1-t)+6(2t-1)cos B} =26(2t-1) cose-13t+4} 2-1 0 ゆえに 求める条件は、任意の8 (0° < 8 <180°) に対して、 ここで 0<t<1であるから +1a1-3. 151-2 のとき 62t-1) cos 0-13t+4≠ 0 が成り立つことである。 -1<p<1 ここで COSB=かとすると よって、f(p)=6(2t-1)p-13t+4 とすると. -1<p<1を満た ゆえに よって ゆえに ←△AOQBPに ついて、メネラウスの定 理を適用してもよい。 OB AP 器・照·賜=1 BQ RA よって すすべてのかについてf (p) = 0 が成り立つようなt の値の範囲 を求めればよい。 11/1/2のと 0<t</1/23 1/12 <t<1との共通範囲は st</, /<<t<1 2 [1] [2] から 求める t の値の範囲は 一同じ符号ならok、 P(-1). 2 1-t FOR 122=1 f(p=-12 であるから.f(p)≠0 を満たす。 [2] OKI</1/11/12 <<1のとき f(p) は1次関数であるから, -1<p<1を満たすすべてのか についてf(p) 0 が成り立つための条件は f(-1)ƒ(1) ≥0 (-25t+10) (-t-2) 20 (5t-2)(+2)≧0 ts-2. / st 1章 OR=OA+2(1-1)0Q +2(1-1) st<1 ] [平面上のベクトル) QR RA=1:2(1-t) raj U EX ta+(1-1)5 2-1 ←0°<8180°のとき -1<cos@<1 ←f(-1)=0 または f(1)=0 または 「f(-1) f(1) が同符号」

回答募集中 回答数: 0
数学 高校生

別解においては z+1/z^2 が実数である条件に|z|=1を組み込んでいるのでそのまま式変形したら二つの条件を満たす解が出てくると思います。 もう一つの方は |z|=1よりzzー=1 を使ってz+1/z^2 が実数である条件に|z|=1を組み込んでいるのにそのまま別解のよ... 続きを読む

類 東北学院 は条件を 3 =z-3 a-B|=1 上の3点 が2の正 2√3 重要 例題 5 複素数の実数条件 z+1 学院大学 絶対値が1で , 指針> z+1 解答 すなわち 両辺に(z) を掛けて よって |z|=1 より zz=1であるから z+z²=2+(z)² ゆえに zzz(z)=0 なお,よって を掛けてゆえに よい。 複素数 αが実数⇔ α =α を利用する。 (2+1)=2+1 から得られるz, えの式を,|2|=1 すなわち=1 を代入することで簡単 121=1 → にする。 なお、 z=1から得られる z=- またはえ=1/2 を利用し,zのみまたはえのみ の式にして扱う方法も考えられる。 が実数であるための条件は z+1_z+1 [1] z-z=0のとき α+β [1][2] から 65 この方程式を解くと 練習 が実数であるような複素数zを求めよ。 別解 zz=1から (z_z) (1+z+2)=0 zz = 0 または 1+z+z=0 z=±1. A z+1 x= z²(z+1)=(z)²(z+1) 2.2z+2²=2.2z+(z)² 2 別解 Z=2 よって, z は実数であるから, |z|=1 より z=±1 [2] 1+z+z=0のとき 2+2=-1&dtß = ~ また, z=1であるから, z, は2次方程式x2+x+1=0のx²-(和)x+(積) = 0 解である。 dB=~ -1±√√3i 2 == 2 2+2²=2+1 −1± √√1²-4∙1 2・1 z+1 22 よって -1± √√3 i 2 z+1 ゆえに, Aは よって これを解いて z=±1, · 121=1==122=1&11711172 (2+1) = 2#12 #1112113 ztl ztl Z2 両辺に2を掛けて (z+1)(z-1)(z2+z+1)=0 -1±√3i 2 αが実数⇔ α =α (B)=²₁ a²=(a)² 00 z-z+(z+i)(z_z)=0 α, β が複素数のときも αβ = 0 ならば = 1/2 + ( ²¹2 ) ² = ²² 基本2 が成り立つ。 α = 0 または β=0 =2+z 2³ (2+1)-(2+1)=0 12³-1 z2z(z+1)=z+1 解の公式を利用。 ZZが解となっているがつに仕え という複素数がに11,ERS 満たしてるのでその手ま答えになる つまり、変形した式ははにし、基E脂満たす複素数の式 絶対値が1で、2-zが実数であるような複素数zを求めよ。 =(z-1)(z2+z+1) 17 1章 複素数平面 [類 関西大] (p.18 EX6

回答募集中 回答数: 0
数学 高校生

72番です 解説だけではさっぱり分からないのでどなたかより詳しく教えてください🙏

# 一般社回ってる! 2 70 数列 り返しの規則性がある数列 繰り返しの切り替わりの場所に仕切りを」 入れて、群に分けてみる。 (1) ²が初めて現れるのは、第群の未項で ある。 (2) 第100が何の第何項かを求める。 この数列を、次のように群が鯛の数を含 むように分ける。 O 132 第1章 数列 68 自然数の列を、次のように1個 2個 4個 8個 2個 の群に 分ける。 3/1 11.41.4.91.4.9.16 土 1.4. 9. 16.25/1, 12,3/4, 5, 6, 7 8, 9, 10, 11, 12, 13, 14, 15 16, ··・・・・ (1) 第ヶ群の最初の自然数を求めよ。 600は第何群の第何項か。 第ヶ群にあるすべての自然数の和を求めよ。 がある。 69 数列 1. 1, 4, 1,4, 9, 1, 4, 9, 16, 1, 4, 9, 16, 25, 1, ······ ナ ”を自然数としたとき、自然数がが初めて現れるのは第何項か。 (2) 第100項を求めよ。 (3) 初項から第100項までの和を求めよ。 項から第 800頃までの和を求めよ。 9 #14+12 1, 2, 3, 4, 5 13, 1. 21. 2, 3215. 23.3.4 2 3 1121 2 2'3'3'4'45'5'5' 1 5'6'6' 4 数列 1,2,3,… n において,次の積の和を求めよ。 異なる2つの項の積の和(n≧2) 互いに隣り合わない異なる2つの項の積の和(n≧3) において、初 OctXT²) (143) h=< n²t A=4 2 11 35 70 分母が同じ うに分ける。 (X+①(x²(x) 発展問題 □72 (x+1)(x+2)(x+3)(x+n) の展開式において,次の係数を求めよ。 (+2) 24+11 x-1の係数 (2) x 2の係数 ( n ≧2) セント 69 次のような群に分ける。 11,4|1,4,9|1,4, 9, 161, 4, 9, 16, 25 1, 70 分母が同じ分数が同じ群となるように分ける。 71 (1) (a+b+c+)² = (a² + b ² + c²+)+2(ab+ac++bc+) 318 318 第1群からか! 1+2+4 412 23' 3 12 (x²+x²+4/ 例題

回答募集中 回答数: 0